Memory requires similar episodes with overlapping features to be represented distinctly, a process that is disrupted in many clinical conditions as well as normal aging. Data from humans have linked this ability to activity in hippocampal CA3 and dentate gyrus (DG). While animal models have shown the perirhinal cortex is critical for disambiguating similar stimuli, hippocampal activity has not been causally linked to discrimination abilities. The goal of the current study was to determine how disrupting CA3/DG activity would impact performance on a rodent mnemonic discrimination task. Rats were surgically implanted with bilateral guide cannulae targeting dorsal CA3/DG. In Experiment 1, the effect of intra-hippocampal muscimol on target-lure discrimination was assessed within subjects in randomized blocks. Muscimol initially impaired discrimination across all levels of target-lure similarity, but performance improved on subsequent test blocks irrespective of stimulus similarity and infusion condition. To clarify these results, Experiment 2 examined whether prior experience with objects influenced the effect of muscimol on target-lure discrimination. Rats that received vehicle infusions in a first test block, followed by muscimol in a second block, did not show discrimination impairments for target-lure pairs of any similarity. In contrast, rats that received muscimol infusions in the first test block were impaired across all levels of target-lure similarity. Following discrimination tests, rats from Experiment 2 were trained on a spatial alternation task. Muscimol infusions increased the number of spatial errors made, relative to vehicle infusions, confirming that muscimol remained effective in disrupting behavioral performance. At the conclusion of behavioral experiments, fluorescence in situ hybridization for the immediate-early genes Arc and Homer1a was used to determine the proportion of neurons active following muscimol infusion. Contrary to expectations, muscimol increased neural activity in DG. An additional experiment was carried out to quantify neural activity in naïve rats that received an intra-hippocampal infusion of vehicle or muscimol. Results confirmed that muscimol led to DG excitation, likely through its actions on interneuron populations in hilar and molecular layers of DG and consequent disinhibition of principal cells. Taken together, our results suggest disruption of coordinated neural activity across the hippocampus impairs mnemonic discrimination when lure stimuli are novel.
for their help with carrying out behavioral experiments and analyses of video recordings. We also thank Abbi Hernandez for assistance in collecting tissue for histology.
The hippocampal theta rhythm strongly correlates to awake behavior leading to theories that it represents a cognitive state of the brain. As theta has been observed in other regions of the Papez circuit, it has been theorized that activity propagates in a reentrant manner. These observations complement the energy cascade hypothesis in which large-amplitude, slow-frequency oscillations reflect activity propagating across a large population of neurons. Higher frequency oscillations, such as gamma, are related to the speed with which inhibitory and excitatory neurons interact and distribute activity on the local level. The energy cascade hypothesis suggests that the larger anatomical loops, maintaining theta, drive the smaller loops. As hippocampal theta increases in power with running speed, so does the power and frequency of the gamma rhythm. If theta is propagated through the circuit, it stands to reason that the local field potential recorded in other regions would be coupled to the hippocampal theta, with the coupling increasing with running speed. We explored this hypothesis using open-source simultaneous recorded data from the CA1 region of the hippocampus and the anterior dorsal and anterior ventral thalamus. Cross-regional theta coupling increased with running speed. Although the power of the gamma rhythm was lower in the anterior thalamus, there was an increase in the coupling of hippocampal theta to anterior thalamic gamma. Broadly, the data support models of how activity moves across the nervous system, suggesting that the brain uses large-scale volleys of activity to support higher cognitive processes.Significance StatementTheta and gamma are the local-field potential rhythms often studied in the hippocampal and entorhinal areas. However, these brain regions are only a component of the reentrant anatomy of the limbic system, suggesting that oscillatory interactions may reflect a more global process of neural organization. Here, we report theta and gamma interactions between hippocampus and the anterior dorsal and ventral nuclei of the thalamus that increase in strength as a function of running speed. These data reinforce the theory that larger rhythms are the physiological consequence of large-scale synaptic events across brain regions, where smaller oscillations represent the activity of a smaller synaptic pool.
Theta oscillations in the primary visual cortex (VC) have been observed during running tasks, but the mechanism behind their generation is not well understood. Some studies have suggested that theta in the VC is locally generated, while others have proposed that it is volume conducted from the hippocampus. The present study aimed to investigate the relationship between hippocampal and VC LFP dynamics. Analysis of power spectral density revealed that LFP in the VC was similar to that in the hippocampus, but with lower overall magnitude. As running velocity increased, both the power and frequency of theta and its harmonics increased in the VC, similarly to what is observed in the hippocampus. Current source density analysis triggered to theta did not identify distinct current sources and sinks in the VC, supporting the idea that theta in the VC is conducted from the adjacent hippocampus. Phase coupling between theta, its harmonics, and gamma is a notable feature in the hippocampus, particularly in the lacunosum moleculare. While some evidence of coupling between theta and its harmonics in the VC was found, bicoherence estimates did not reveal significant phase coupling between theta and gamma. Similar results were seen in the cross-region bicoherence analysis, where theta showed strong coupling with its harmonics with increasing velocity. Thus, theta oscillations observed in the VC during running tasks are likely due to volume conduction from the hippocampus.
It is well established that degradation of perforant path fibers is associated with age-related cognitive dysfunction and CA3 hyperactivity. Whether this fiber loss triggers a cascade of other functional changes within the hippocampus circuit has not been causatively established, however. Thus, the current study evaluated the effect of perforant path fiber loss on neuronal activity in CA3 and layer II of the lateral entorhinal cortex (LEC) in relation to mnemonic similarity task performance. Expression of the immediate early gene Arc was quantified in rats that received a unilateral right hemisphere transection of the perforant path or sham surgery that cut the cortex but left the fibers intact. Behavior-related expression of Arc mRNA was measured to test the hypothesis that fiber loss leads to elevated activation of CA3 and LEC neurons, as previously observed in aged rats that were impaired on the mnemonic similarity task. Transection of perforant path fibers, which has previously been shown to lead to a decline in mnemonic similarity task performance, did not alter Arc expression. Arc expression in CA3, however, was correlated with task performance on the more difficult discrimination trials across both surgical groups. These observations further support a link between CA3 activity and mnemonic similarity task performance but suggest the reduced input from the entorhinal cortex to the hippocampus, as observed in old age, does not causatively elevate CA3 activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.