Many organisms have the ability to shed an appendage (autotomy) to escape a predator or fouled molting event. Despite its immediate advantage on survivorship, autotomy can have important consequences for locomotion, foraging, survivorship, and/ or reproduction. Thus, regeneration is a way that animals alleviate some of the costs associated with losing an appendage. Like autotomy, however, appendage regeneration can have important consequences for a variety of aspects of fitness; in a wide range of amphibians, reptiles, fishes, and arthropods, the allocation of resources to regenerate a lost appendage negatively affects somatic or reproductive growth. Previous research into the costs associated with regeneration has provided a strong framework to explore how trade-offs associated with regeneration may have influenced its evolution. However, all research to date describing the costs and benefits associated with autotomy and regeneration have compared individuals autotomizing and regenerating an appendage with individuals that have never lost an appendage. I suggest that for studies of the evolutionary significance of regeneration, an alternative comparison is between individuals experiencing autotomy without regeneration and individuals experiencing autotomy with regeneration. Future work in this direction promises new insights into the evolution of regenerative tendencies, as well as how regeneration may be influencing animal form and function.
Sensory and social inputs interact with underlying gene suites to coordinate social behavior. Here we use a naturally complex system in sexual selection studies, the swordtail, to explore how genes associated with mate preference, receptivity, and social affiliation interact in the female brain under specific social conditions. We focused on 11 genes associated with mate preference in this species (neuroserpin, neuroligin-3, NMDA receptor, tPA, stathmin-2, β-1 adrenergic receptor) or with female sociosexual behaviors in other taxa (vasotocin, isotocin, brain aromatase, α-1 adrenergic receptor, tyrosine hydroxylase). We exposed females to four social conditions, including pairings of differing mate choice complexity (large males, large/small males, small males), and a social control (two females). Female mate preference differed significantly by context. Multiple discriminant analysis (MDA) of behaviors revealed a primary axis (explaining 50.2% between-group variance) highlighting differences between groups eliciting high preference behaviors (LL, LS) vs. other contexts, and a secondary axis capturing general measures distinguishing a non-favored group (SS) from other groups. Gene expression MDA revealed a major axis (68.4% between-group variance) that distinguished amongst differential male pairings and was driven by suites of “preference and receptivity genes”; whereas a second axis, distinguishing high affiliation groups (large males, females) from low (small males), was characterized by traditional affiliative-associated genes (isotocin, vasotocin). We found context-specific correlations between behavior and gene MDA, suggesting gene suites covary with behaviors in a socially relevant context. Distinct associations between “affiliative” and “preference” axes suggest mate preference may be mediated by distinct clusters from those of social affiliation. Our results highlight the need to incorporate natural complexity of mating systems into behavioral genomics.
Major morphological structures are sometimes produced not once, but twice. For example, stick insects routinely shed legs to escape a predator or tangled moult, and these legs are subsequently re-grown. Here, I show that in Sipyloidea sipylus, re-growth of a leg during development causes adults to have disproportionately smaller wings and increases wing loading. These morphological consequences of leg regeneration led to significant reductions in several biologically relevant measures of individual flight performance. This previously unrecognized tradeoff between legs and wings reveals the integrated nature of phasmid phenotypes, and I propose how this tradeoff may have shaped phasmid evolution.
With no object to hide behind in 3D space, the open ocean represents a challenging environment for camouflage. Conventional strategies for reflective crypsis (e.g., standard mirror) are effective against axially symmetric radiance fields associated with high solar altitudes, yet ineffective against asymmetric polarized radiance fields associated with low solar inclinations. Here we identify a biological model for polaro-crypsis. We measured the surface-reflectance Mueller matrix of live open ocean fish (lookdown, Selene vomer) and seagrassdwelling fish (pinfish, Lagodon rhomboides) using polarizationimaging and modeling polarization camouflage for the open ocean. Lookdowns occupy the minimization basin of our polarizationcontrast space, while pinfish and standard mirror measurements exhibit higher contrast values than optimal. The lookdown reflective strategy achieves significant gains in polaro-crypsis (up to 80%) in comparison with nonpolarization sensitive strategies, such as a vertical mirror. Lookdowns achieve polaro-crypsis across solar altitudes by varying reflective properties (described by 16 Mueller matrix elements m ij ) with incident illumination. Lookdowns preserve reflected polarization aligned with principle axes (dorsal-ventral and anteriorposterior, m 22 = 0.64), while randomizing incident polarization 45°f rom principle axes (m 33 = -0.05). These reflectance properties allow lookdowns to reflect the uniform degree and angle of polarization associated with high-noon conditions due to alignment of the principle axes and the sun, and reflect a more complex polarization pattern at asymmetrical light fields associated with lower solar elevations. Our results suggest that polaro-cryptic strategies vary by habitat, and require context-specific depolarization and angle alteration for effective concealment in the complex open ocean environment.
BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.