In antigen-presenting cells (APCs), loading of major histocompatibility complex class II (MHC II) molecules with peptides is regulated by invariant chain (Ii), which blocks MHC II antigen-binding sites in pre-endosomal compartments. Several molecules then act upon MHC II molecules in endosomes to facilitate peptide loading: Ii-degrading proteases, the peptide exchange factor, human leukocyte antigen-DM (HLA-DM), and its modulator, HLA-DO (DO). Here, we review our findings arguing that DM stabilizes a globally altered conformation of the antigen-binding groove by binding to a lateral surface of the MHC II molecule. Our data imply changes in the interactions between specificity pockets and peptide side chains, complementing data from others that suggest DM affects hydrogen bonds. Selective weakening of peptide/MHC interactions allows DM to alter the peptide repertoire. We also review our studies in cells that highlight the ability of several factors to modulate surface expression of MHC II molecules via post-Golgi mechanisms; these factors include MHC class II-associated Ii peptides (CLIP), DM, and microbial products that modulate MHC II traffic from endosomes to the plasma membrane. In this context, we discuss possible mechanisms by which the association of some MHC II alleles with autoimmune diseases may be linked to their low CLIP affinity.
Expression of HLA-DO (DO) in cells that express HLA-DM (DM) results in an altered repertoire of MHC class II/peptide complexes, indicating that DO modulates DM function. Human and murine B cells and thymic epithelial cells express DO, while monocytes/macrophages do not. Monocyte-derived dendritic cells (DC) also have been found to be DO-negative, leading to the assumption that DC do not express DO. In this study, we report that, in fact, certain types of human primary DC express DO. These include Langerhans cells (LC) and some subtypes of circulating blood DC. Specifically, the majority of BDCA-3+ DC, a small subset of uncertain function, are DO+, while smaller proportions of CD11c+, BDCA-1+ (myeloid) DC, at most a minority of CD123+/BDCA-2+ (plasmacytoid) DC, and no detectable CD16+ (myeloid) DC, express DO. Immunohistochemistry of human tonsil sections demonstrates that tonsillar interdigitating DC are also DO+. In a subset of immature LC with higher DO expression, an increased fraction of surface DR molecules carry CLIP peptides, indicating that DO functions as a DM inhibitor in these cells. LC expression of DO is down-regulated by maturation stimuli. DM levels also decrease under these conditions, but the DM:DO ratio generally increases. In the myeloid cell types tested, DO expression correlates with levels of DOβ, but not DOα, implying that modulation of DOβ regulates DO dimer abundance in these cells. The range of APC types shown to express DO suggests a broader role for DO in immune function than previously appreciated.
GM-CSF stimulates the growth and differentiation of hematopoietic progenitors and also affects mature cell function. These effects have led to the use of GM-CSF as a vaccine adjuvant with promising results; however, the mechanisms underlying GM-CSF-mediated immune potentiation are incompletely understood. In this study, we investigated the hypothesis that the immune stimulatory role of GM-CSF is in part due to effects on class II MHC Ag presentation. We find that, in primary human monocytes treated for 24–48 h, GM-CSF increases surface class II MHC expression and decreases the relative level of the invariant chain-derived peptide, CLIP, bound to surface class II molecules. GM-CSF also increases expression of the costimulatory molecules CD86 and CD40, but not the differentiation marker CD1a or CD16. Furthermore, GM-CSF-treated monocytes are better stimulators in a mixed leukocyte reaction. Additional analyses of the class II pathway revealed that GM-CSF increases total protein and RNA levels of HLA-DR, DM, and DOα. Expression of class II transactivator (CIITA) types I and III, but not IV, transcripts increases in response to GM-CSF. Furthermore, GM-CSF increases the amount of CIITA associated with the DR promoter. Thus, our data argue that the proinflammatory role of GM-CSF is mediated in part through increased expression of key molecules involved in the class II MHC pathway via induction of CIITA.
Human cytomegalovirus (HCMV) productively infects CD34+ progenitor-derived, mature Langerhans-type dendritic cells (matLC) and reduces surface expression of MHC class II complexes (MHC II) by increasing intracellular retention of these molecules. To determine whether HCMV also inhibits MHC II expression by other mechanisms, we assessed mRNA levels of the class II transcriptional regulator, CIITA, and several of its target genes in infected matLC. Levels of CIITA, HLA-DRA (DRA) and DRB transcripts, and new DR protein synthesis were compared in mock-infected and HCMV-infected cells by quantitative PCR and pulse-chase immunoprecipitation analyses, respectively. CIITA mRNA levels were significantly lower in HCMV-infected matLC as compared to mock-infected cells. When assessed in the presence of Actinomycin D, the stability of CIITA transcripts was not diminished by HCMV. Analysis of promoter-specific CIITA isoforms revealed that types I, III and IV all were decreased by HCMV, a result that differs from changes after incubation of these cells with lipopolysaccharide (LPS). Exposure to UV-inactivated virus failed to reduce CIITA mRNA levels, implicating de novo viral gene expression in this effect. HCMV-infected matLC also expressed lower levels of DR transcripts and reduced DR protein synthesis rates compared to mock-infected matLC. In summary, we demonstrate that HCMV infection of a human dendritic cell subset inhibits constitutive CIITA expression, most likely at the transcriptional level, resulting in reduced MHC II biosynthesis. We suggest this represents a new mechanism of modulation of mature LC by HCMV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.