Polyploidy is a mutation with profound phenotypic consequences and thus hypothesized to have transformative effects in plant ecology. This is most often considered in the context of geographical and environmental distributions—as achieved from divergence of physiological and life-history traits—but may also include species interactions and biological invasion. This paper presents a historical overview of hypotheses and empirical data regarding the ecology of polyploids. Early researchers of polyploidy (1910s–1930s) were geneticists by training but nonetheless savvy to its phenotypic effects, and speculated on the importance of genome duplication to adaptation and crop improvement. Cytogenetic studies in the 1930s–1950s indicated that polyploids are larger (sturdier foliage, thicker stems and taller stature) than diploids while cytogeographic surveys suggested that polyploids and diploids have allopatric or parapatric distributions. Although autopolyploidy was initially regarded as common, influential writings by North American botanists in the 1940s and 1950s argued for the principle role of allopolyploidy; according to this view, genome duplication was significant for providing a broader canvas for hybridization rather than for its phenotypic effects per se . The emphasis on allopolyploidy had a chilling effect on nascent ecological work, in part due to taxonomic challenges posed by interspecific hybridization. Nonetheless, biosystematic efforts over the next few decades (1950s–1970s) laid the foundation for ecological research by documenting cytotype distributions and identifying phenotypic correlates of polyploidy. Rigorous investigation of polyploid ecology was achieved in the 1980s and 1990s by population biologists who leveraged flow cytometry for comparative work in autopolyploid complexes. These efforts revealed multi-faceted ecological and phenotypic differences, some of which may be direct consequences of genome duplication. Several classical hypotheses about the ecology of polyploids remain untested, however, and allopolyploidy—regarded by most botanists as the primary mode of genome duplication—is largely unstudied in an ecological context.
Ivy (Hederá spp., Araliaceae) is a polyploid complex of woody vines. Native to Eurasia and northern Africa, ivy is cultivated worldwide and has become an aggressive invader of North American forests. Despite its ecological impacts and economic significance to the horticultural industry, the taxonomy of Hederá is controversial and historical relationships are poorly defined. Here we characterize the phylogeny of Hederá based on the low-copy nuclear locus Granule-bound starch synthase I (GBSSI) and twelve non-coding cpDNA regions. Maximum parsimony and Bayesian analyses of both data sets identified Hederá as monophyletic. For GBSSI, we isolated eighteen haplotypes that were widely shared across species. There was no evidence of fixed heterozygosity or haplotype additivity in polyploids, suggesting possible autopolyploid origins. For cpDNA, we isolated sixteen haplotypes that were highly structured by geography. Haplotype diversity and phylogenetic structure were greatest in northern Africa and southern Europe. Thus, while most members of the Araliaceae reside in tropical and subtropical Asia, the early diversification of Udcm probably occurred in the Mediterranean Basin. Geographically-structured clades included diploid and polyploid species, suggesting that genome duplication has occurred repeatedly in the genus. Closely-related ivies often differed in leaf size and trichome morphology, indicating evolutionary lability of traits traditionally used for classification. Nonetheless, we recovered similar or identical DNA sequences within morphologically-defined species. Notable exceptions included southern populations of H. helix (H. helix subsp. caucasigena and H. helix subsp. rhizomatifera) that had cpDNA haplotypes distinct from those of central and northern Europe (H. helix subsp. helix).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.