The fossil record of the terminal Ediacaran Period is typified by the iconic index fossil Cloudina and its relatives. These tube-dwellers are presumed to be primitive metazoans, but resolving their phylogenetic identity has remained a point of contention. The root of the problem is a lack of diagnostic features; that is, phylogenetic interpretations have largely centered on the only available source of information-their external tubes. Here, using tomographic analyses of fossils from the Wood Canyon Formation (Nevada, USA), we report evidence of recognizable soft tissues within their external tubes. Although alternative interpretations are plausible, these internal cylindrical structures may be most appropriately interpreted as digestive tracts, which would be, to date, the earliest-known occurrence of such features in the fossil record. If this interpretation is correct, their nature as one-way through-guts not only provides evidence for establishing these fossils as definitive bilaterians but also has implications for the long-debated phylogenetic position of the broader cloudinomorphs.
Cloudinids have long been considered the earliest biomineralizing metazoans, but their affinities have remained contentious and undetermined. Based on well-preserved ultrastructures of two taxa, we here propose new interpretations regarding both their extent of original biomineralization and their phylogenetic affinity. One of these taxa is a new cloudinid from Mongolia, Zuunia chimidtsereni gen. et sp. nov., which exhibits key characteristics of submicrometric kerogenous lamellae, plastic tubewall deformation, and tube-wall delamination. Multiple carbonaceous lamellae are also discovered in Cloudina from namibia and paraguay, which we interpret to have originated from chitinous or collagenous fabrics. We deduce that these cloudinids were predominantly originally organic (chitinous or collagenous), and postmortem decay and taphonomic mineralization resulted in the formation of aragonite and/or calcite. further, based on our ultrastructural characterization and other morphological similarities, we suggest that the cloudinids should most parsimoniously be assigned to annelids with originally organic tubes.
Some of the most varied colors in the natural world are created by iridescent nanostructures in bird feathers, formed by layers of melanin‐containing melanosomes. The morphology of melanosomes in iridescent feathers is known to vary, but the extent of this diversity, and when it evolved, is unknown. We use scanning electron microscopy to quantify the diversity of melanosome morphology in iridescent feathers from 97 extant bird species, covering 11 orders. In addition, we assess melanosome morphology in two Eocene birds, which are the stem lineages of groups that respectively exhibit hollow and flat melanosomes today. We find that iridescent feathers contain the most varied melanosome morphologies of all types of bird coloration sampled to date. Using our extended dataset, we predict iridescence in an early Eocene trogon (cf.
Primotrogon
) but not in the early Eocene swift
Scaniacypselus
, and neither exhibit the derived melanosome morphologies seen in their modern relatives. Our findings confirm that iridescence is a labile trait that has evolved convergently in several lineages extending down to paravian theropods. The dataset provides a framework to detect iridescence with more confidence in fossil taxa based on melanosome morphology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.