Despite Auger electrons being highly appealing due to their short-range and high linear energy transfer to surrounding tissues, the progress in the field has been limited due to the challenge in delivering a therapeutic dose within the close proximity of cancer cell’s DNA. Here, we demonstrate that the PARP inhibitor 123I-MAPi is a viable agent for the systemic administration and treatment of p53 mutant cancers. Significantly, minimal off-site toxicity was observed in mice administered with up to 74 MBq of 127I-PARPi. Taken together, these results lay the foundation for future clinical evaluation and broader preclinical investigations. By harnessing the scaffold of the PARP inhibitor Olaparib, we were able to deliver therapeutic levels of Auger radiation to the site of human colorectal cancer xenograft tumors after systemic administration. In-depth toxicity studies analyzed blood chemistry levels and markers associated with specific organ toxicity. Finally, p53+/+ and p53–/– human colorectal cancer cell lines were evaluated for the ability of 123I-MAPi to induce tumor growth delay. Toxicity studies demonstrate that both 123I-MAPi and its stable isotopologue, 127I-PARPi, have no significant off-site toxicity when administered systemically. Analysis following 123I-MAPi treatment confirmed its ability to induce DNA damage at the site of xenograft tumors when administered systemically. Finally, we demonstrate that 123I-MAPi generates a therapeutic response in p53–/–, but not p53+/+, subcutaneous xenograft tumors in mouse models. Taken together, these results represent the first example of a PARP Auger theranostic agent capable of delivering a therapeutic dose to xenograft human colorectal cancer tumors upon systemic administration without causing significant toxicity to surrounding mouse organs. Moreover, it suggests that a PARP Auger theranostic can act as a targeted therapeutic for cancers with mutated p53 pathways. This landmark goal paves the way for clinical evaluation of 123I-MAPi for pan cancer therapeutics.
Multiple myeloma (MM) is the second most prevalent hematological malignancy. It remains incurable despite the availability of novel therapeutic approaches, marking an urgent need for new agents for noninvasive targeted imaging of MM lesions. CD38 has proven to be an excellent biomarker due to its high expression in aberrant lymphoid and myeloid cells relative to normal cell populations. Using isatuximab (Sanofi), the latest FDA-approved CD38-targeting antibody, we have developed Zirconium-89(89Zr)-labeled isatuximab as a novel immunoPET tracer for the in vivo delineation of MM and evaluated the extension of its applicability to lymphomas. In vitro studies validated the high binding affinity and specificity of 89Zr-DFO-isatuximab for CD38. PET imaging demonstrated the high performance of 89Zr-DFO-isatuximab as a targeted imaging agent to delineate tumor burden in disseminated models of MM and Burkitt’s lymphoma. Ex vivo biodistribution studies confirmed that high accumulations of the tracer in bone marrow and bone skeleton correspond to specific disease lesions as they are reduced to background in blocking and healthy controls. This work demonstrates the promise of 89Zr-DFO-isatuximab as an immunoPET tracer for CD38-targeted imaging of MM and certain lymphomas. More importantly, its potential as an alternative to 89Zr-DFO-daratumumab holds great clinical relevance.
Background: Anosmia/hyposmia affects 13.3 million people in the U.S. alone according to the recent U.S. National Health and Nutrition Examination Survey (NHANES). Hundreds of thousands more people with persistent olfactory dysfunction will be added to this number due to the COVID-19 pandemic. Patients with loss-of-function mutations in SCN9A, the gene encoding NaV1.7, experience anosmia in addition to congenital insensitivity to pain. Tsp1a is a recently discovered peptide that inhibits NaV1.7 with high potency and selectivity. In this study, we examined whether a fluorescently tagged version of Tsp1a could be used to visualize normal and damaged mouse olfactory nerves. Methods: Athymic nude mice were intravenously injected with Tsp1a-IR800. As a control, mice were injected with PBS only, and as a blocking control were injected with combination of Tsp1a and Tsp1a-IR800. All mice were imaged in-vivo and epifluorescence images were acquired using an IVIS Spectrum animal imaging system. Semiquantitative analysis of the Tsp1a-IR800 signal was conducted by measuring the average radiant efficiency in the region of the olfactory epithelium/bulb (ROEB). Methimazole was used to chemically ablate the olfactory epithelium. We performed a food buried test to correlate the level of anosmia with the level of radiance efficiency. Results: The area of olfactory epithelium/bulb was clearly visible in epifluorescence in-vivo images of mice receiving the imaging agent. The radiant efficiency was significantly less in both mice injected with PBS and in mice injected with the blocking formulation. The mice after olfactory ablation had a significantly reduced radiant efficiency compared with normal mice. Moreover, there was a statistically significant and inverse correlation between the time required for the mouse to find buried food and the radiant efficiency. We also performed immunohistochemistry using NaV1.7 antibody. Mice after olfactory ablation as well as COVID-19-infected mice had significantly lower expression of NaV1.7 on the level of olfactory epithelium/bulb. Conclusion: We show that the fluorescent imaging of mouse olfactory epithelium/bulb is possible, suggesting that labeled Tsp1a tracers may serve as the first objective diagnostic tool of smell disorders, including those caused by COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.