Poly(aspartic acid) (PAA) is a green alternative to nonbiodegradable poly(carboxylates) and has applications in both industrial and biomedical settings. PAA is synthesized by heating monomeric aspartic acid to yield a polysuccinamide that can be ring-opened to yield thermal PAA composed of 30% α-amide and 70% β-amide linkages. Here, we report the first X-ray crystal structure of a PAA hydrolase from the bacteria Sphingomonas sp. KT-1 (PahZ1 KT-1 ) which functions to degrade synthetic PAA to oligo(aspartic acid) by selective cleavage of β-amide linkages. The structure was solved to 2.45 Å and shows a dimeric assembly where each monomer maintains an α/β hydrolase fold with a prominent, positively lined trough responsible for binding the anionic polymeric substrate. The putative catalytic sites of each monomer lie at the surface of the enzyme on opposite faces. The dimeric interface, as supported by small-angle X-ray scattering/multi-angle light scattering data, is primarily hydrophobic and is further stabilized by flanking hydrogen bonds. Molecular dynamics simulations support the previously determined specific cleavage of only the β-amide linkage through a conformational change that aligns the substrate with the active site Ser. These data provide a scaffold for further understanding the mechanism of PAA hydrolysis and opens the opportunity for using protein engineering to catalyze the biodegradation of other xenobiotics.
Poly(aspartic acid) (PAA) is a common water-soluble polycarboxylate used in a broad range of applications. PAA biodegradation and environmental assimilation were first identified in river water bacterial strains, Sphingomonas sp. KT-1 and Pedobacter sp. KP-2. Within Sphingomonas sp. KT-1, PahZ1 KT-1 cleaves β-amide linkages to oligo(aspartic acid) and then is degraded by PahZ2 KT-1 . Recently, we reported the first structure for PahZ1 KT-1 . Here, we report novel structures for PahZ2 KT-1 bound to either Gd 3+ /Sm 3+ or Zn 2+ cations in a dimeric state consistent with M28 metallopeptidase family members. PahZ2 KT-1 monomers include a dimerization domain and a catalytic domain with dual Zn 2+ cations. MD methods predict the putative substrate binding site to span across the dimerization and catalytic domains, where NaCl promotes the transition from an open conformation to a closed conformation that positions the substrate adjacent to catalytic zinc ions. Structural knowledge of PahZ1 KT-1 and PahZ2 KT-1 will allow for protein engineering endeavors to develop novel biodegradation reagents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.