Starting with a new formulation for the mutual information (MI) between a pair of events, this paper derives alternative upper bounds and extends those to the case of two discrete random variables. Normalized mutual information (NMI) measures are then obtained from those bounds, emphasizing the use of least upper bounds. Conditional NMI measures are also derived for three different events and three different random variables. Since the MI formulation for a pair of events is always nonnegative, it can properly be extended to include weighted MI and NMI measures for pairs of events or for random variables that are analogous to the well-known weighted entropy. This weighted MI is generalized to the case of continuous random variables. Such weighted measures have the advantage over previously proposed measures of always being nonnegative. A simple transformation is derived for the NMI, such that the transformed measures have the value-validity property necessary for making various appropriate comparisons between values of those measures. A numerical example is provided.
Cohen's Kappa is a measure of the over-all agreement between two raters classifying items into a given set of categories. This communication describes a simple computational method of determining the agreement on specific categories without the need to collapse the original data table as required by the previous Kappa-based method. It is also pointed out that Kappa may be formulated in terms of certain distance metrics. The computational procedure for the specific agreement measure is exempldied using hypothetical data from psychological diagnoses.
Various properties have been advocated for biological evenness indices, with some properties being clearly desirable while others appear questionable. With a focus on such properties, this paper makes a distinction between properties that are clearly necessary and those that appear to be unnecessary or even inappropriate. Based on Euclidean distances as a criterion, conditions are introduced in order for an index to provide valid, true, and realistic representations of the evenness characteristic (attribute) from species abundance distributions. Without such value-validity property, it is argued that a measure or index provides only limited information about the evenness and results in misleading interpretations and evenness comparisons and incorrect results and conclusions. Among the overabundant variety of evenness indices, each of which is typically derived by rescaling a diversity measure to the interval from 0 to 1 and thereby controlling or adjusting for the species richness, most are found to lack the value-validity property and some lack the property of strict Schur-concavity. The most popular entropy-based index reveals an especially poor performance with a substantial overstatement of the evenness characteristic or a large positive value bias. One evenness index emerges as the preferred one, satisfying all properties and conditions. This index is based directly on Euclidean distances between relevant species abundance distributions and has an intuitively meaningful interpretation in terms of relative distances between distributions. The value validity of the indices is assessed by using a recently introduced probability distribution and from the use of computer-generated distributions with randomly varying species richness and probability (proportion) components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.