The definitive diagnosis of canine soft-tissue sarcomas (STSs) is based on histological assessment of formalin-fixed tissues. Assessment of parameters, such as degree of differentiation, necrosis score and mitotic score, give rise to a final tumour grade, which is important in determining prognosis and subsequent treatment modalities. However, grading discrepancies are reported to occur in human and canine STSs, which can result in complications regarding treatment plans. The introduction of digital pathology has the potential to help improve STS grading via automated determination of the presence and extent of necrosis. The detected necrotic regions can be factored in the grading scheme or excluded before analysing the remaining tissue. Here we describe a method to detect tumour necrosis in histopathological whole-slide images (WSIs) of STSs using machine learning. Annotated areas of necrosis were extracted from WSIs and the patches containing necrotic tissue fed into a pre-trained DenseNet161 convolutional neural network (CNN) for training, testing and validation. The proposed CNN architecture reported favourable results, with an overall validation accuracy of 92.7% for necrosis detection which represents the number of correctly classified data instances over the total number of data instances. The proposed method, when vigorously validated represents a promising tool to assist pathologists in evaluating necrosis in canine STS tumours, by increasing efficiency, accuracy and reducing inter-rater variation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.