This study is concerned with behaviour of proteins within confinement created by hard-sphere obstacles. The individual antibody molecule is depicted as an assembly of seven hard spheres, organized to resemble...
We have studied the phase behavior of polydisperse Yukawa hard-sphere fluid confined in random porous media using extension and combination of high temperature approximation and scaled particle theory. The porous media are represented by the matrix of randomly placed hard-sphere obstacles. Due to the confinement, polydispersity effects are substantially enhanced. At an intermediate degree of fluid polydispersity and low density of the matrix, we observe two-phase coexistence with two critical points, and cloud and shadow curves forming closed loops of ellipsoidal shape. With the increase of the matrix density and the constant degree of polydispersity, these two critical points merge and disappear, and at lower temperatures the system fractionates into three coexisting phases. A similar phase behavior was observed in the absence of the porous media caused, however, by the increase of the polydispersity.
Extension of Wertheim's thermodynamic perturbation theory and its combination with scaled particle theory is proposed and applied to study the liquid-gas phase behavior of polydisperse hard-sphere square-well chain fluid confined in the random porous media. Thermodynamic properties of the reference system, represented by the hard-sphere square-well fluid in the matrix, are calculated using corresponding extension of the second-order Barker-Henderson perturbation theory. We study effects of polydispersity and confinement on the phase behavior of the system. While polydispersity causes increase of the region of phase coexistence due to the critical temperature increase, confinement decreases the values of both critical temperature and critical density making the region of phase coexistence smaller. This effect is enhanced with the increase of the size ratio of the fluid and matrix particles. The increase of the average chain length at fixed values of polydispersity and matrix density shifts the critical point to a higher temperature and a slightly lower density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.