Plant-feeding herbivores can generate complex patterns of foliar wounding, but it is unclear how wounding-elicited volatile emissions scale with the severity of different wounding types, and there is no common protocol for wounding experiments. We investigated the rapid initial response to wounding damage generated by different numbers of straight cuts and punctures through leaf lamina as well as varying area of lamina squeezing in the temperate deciduous tree Populus tremula Wounding-induced volatile emission time-courses were continuously recorded by a proton-transfer-reaction time-of-flight mass-spectrometer. After the mechanical wounding, an emission cascade was rapidly elicited resulting in sequential emissions of key stress volatiles methanol, acetaldehyde, and volatiles of the lipoxygenase pathway, collectively constituting more than 97% of the total emission. The maximum emission rates, reached after one to three minutes after wounding, and integrated emissions during the burst were strongly correlated with the severity in all damage treatments. For straight cuts and punch hole treatments, the emissions per cut edge length were constant, indicating a direct proportionality. Our results are useful for screening wounding-dependent emission capacities.
Vegetation indices are calculated from reflectance data of discrete spectral bands. The reflectance signal in the visible spectral range is dominated by the optical properties of photosynthetic pigments in plant leaves. Numerous spectral indices have been proposed for the estimation of leaf pigment contents, but the efficacy of different indices for prediction of pigment content and composition for species-rich communities is unknown. Assessing the ability of different vegetation indices to predict leaf pigment content we identify the most suitable spectral indices from an experimental dataset consisting of field-grown high light exposed leaves of 33 angiosperm species collected in two sites in Mallorca (Spain) with contrasting leaf anatomy and pigment composition. Leaf-level reflectance spectra were recorded over the wavelength range of 400 -900 nm and contents of chlorophyll a, chlorophyll b, total carotenoids, and anthocyanins were measured in 33 species from different plant functional types, covering a wide range of leaf structures and pigment content, fivefold to more than 10-fold for different traits. The best spectral region for estimation of leaf total chlorophyll content with least interference from carotenoids and anthocyanins was the beginning of near-infrared plateau well beyond 700 nm. Leaves of parallel-veined monocots and pinnate-veined dicots had different relationships between vegetation indices and pigments. We suggest that the nature and role of Bfar-redĉ hlorophylls which absorb light at longer wavelengths than 700 nm constitute a promising target for future remote sensing studies.
The release of stress-driven volatiles throughout leaf development has been little studied. Therefore, we subjected poplar leaves during their developmental stage (from two days to two weeks old) to wounding by a single punch hole, and measured online the wound-induced volatile organic compound emissions. Our study shows that the emission of certain volatile compounds fades with increasing leaf age. Among these compounds we found lipoxygenase products (LOX products), acetaldehyde, methyl benzoate, methyl salicylate, and mono-and sesquiterpenes.In parallel, we studied the fading of constitutive emissions of methanol during leaf maturation, as well as the rise in isoprene constitutive emission during leaf maturation and its relationship to leaf photosynthetic capacity. We found highly significant relationships between leaf chlorophyll content, photosynthetic capacity, and leaf size during leaf ageing.As the level of constitutive defences increases with increasing leaf age, the strength of the volatile signal is expected to be gradually reduced. The higher elicitation of volatile organic compound emissions (especially LOX products) in younger leaves could be an evolutionary defence against herbivory, given that younger leaves are usually more subjected to infestation and herbivory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.