The piRNA pathway is a surveillance system that guarantees oogenesis and adult fertility in a range of animal species. The pathway is centered on PIWI clade Argonaute proteins and the associated small non-coding RNAs termed piRNAs. In this study, we set to investigate the evolutionary conservation of the piRNA pathway in the hemimetabolous insect Rhodnius prolixus. Our transcriptome profiling reveals that core components of the pathway are expressed during previtellogenic stages of oogenesis. Rhodnius’ genome harbors four putative piwi orthologs. We show that Rp-piwi2, Rp-piwi3 and Rp-ago3, but not Rp-piwi1 transcripts are produced in the germline tissues and maternally deposited in the mature eggs. Consistent with a role in Rhodnius oogenesis, parental RNAi against the Rp-piwi2, Rp-piwi3 and Rp-ago3 results in severe egg laying and female adult fertility defects. Furthermore, we show that the reduction of the Rp-piwi2 levels by parental RNAi disrupts oogenesis by causing a dramatic loss of trophocytes, egg chamber degeneration and oogenesis arrest. Intriguingly, the putative Rp-Piwi2 protein features a polyglutamine tract at its N-terminal region, which is conserved in PIWI proteins encoded in the genome of other Triatomine species. Together with R. prolixus, these hematophagous insects are primary vectors of the Chagas disease. Thus, our data shed more light on the evolution of the piRNA pathway and provide a framework for the development of new control strategies for Chagas disease insect vectors.
Rhodnius prolixus is a Triatominae insect species and a primary vector of Chagas disease. The genome of R. prolixus has been recently sequenced and partially assembled, but few transcriptome analyses have been performed to date. In this study, we describe the stage-specific transcriptomes obtained from previtellogenic stages of oogenesis and from mature eggs. By analyzing ~ 228 million paired-end RNA-Seq reads, we significantly improved the current genome annotations for 9206 genes. We provide extended 5′ and 3′ UTRs, complete Open Reading Frames, and alternative transcript variants. Strikingly, using a combination of genome-guided and de novo transcriptome assembly we found more than two thousand novel genes, thus increasing the number of genes in R. prolixus from 15,738 to 17,864. We used the improved transcriptome to investigate stage-specific gene expression profiles during R. prolixus oogenesis. Our data reveal that 11,127 genes are expressed in the early previtellogenic stage of oogenesis and their transcripts are deposited in the developing egg including key factors regulating germline development, genome integrity, and the maternal-zygotic transition. In addition, GO term analyses show that transcripts encoding components of the steroid hormone receptor pathway, cytoskeleton, and intracellular signaling are abundant in the mature eggs, where they likely control early embryonic development upon fertilization. Our results significantly improve the R. prolixus genome and transcriptome and provide novel insight into oogenesis and early embryogenesis in this medically relevant insect.
Triatomine assassin bugs comprise hematophagous insect vectors of Trypanosoma cruzi, the causative agent of Chagas disease. Although the microbiome of these species has been investigated to some extent, only one virus infecting Triatoma infestans has been identified to date. Here, we describe for the first time seven (+) single-strand RNA viruses (RpV1-7) infecting Rhodnius prolixus, a primary vector of Chagas disease in Central and South America. We show that the RpVs belong to the Iflaviridae, Permutotetraviridae and Solemoviridae and are vertically transmitted from the mothers to the progeny via transovarial transmission. Consistent with this, all the RpVs, except RpV2 that is related to the entomopathogenic Slow bee paralysis virus, established persistent infections in our R. prolixus colony. Furthermore, we show that R. prolixus ovaries express 22-nucleotide viral siRNAs (vsiRNAs), but not viral piRNAs, that originate from the processing of dsRNA intermediates during viral replication of the RpVs. Interestingly, the permutotetraviruses and sobemoviruses display shared pools of vsiRNAs that might provide the basis for a cross-immunity system. The vsiRNAs are maternally deposited in the eggs, where they likely contribute to reduce the viral load and protect the developing embryos. Our results unveil for the first time a complex core virome in R. prolixus and begin to shed light on the RNAi-based antiviral defenses in triatomines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.