DMAIC (define, measure, analyze, improve and control) is one of the most utilized methods for guiding practitioners in the decision-making process of quality improvement projects. Industrial processes commonly deal with multiple critical-to-quality (CTQ) characteristics. When these characteristics are correlated, multivariate statistical techniques should be applied. This paper aims to propose a domainspecific Six Sigma method, the MDMAIC (multivariate DMAIC). The new stepwise procedure helps practitioners not only to reduce problem dimension but also to take account of the correlation structure among CTQs during the decision-making process. Principal component analysis has been applied for assessing the measurement system, analyzing process stability and capability, as well as modeling and optimizing multivariate manufacturing processes. A hardened steel turning case has been presented for proposal validation. The result analysis has shown that the MDMAIC was very successful in leading the practitioner during the steps and phases of the quality improvement project. The multivariate capability index of the enhanced process emphasized the substantial economic improvement. INDEX TERMS Six sigma, dmaic, quality improvement, principal component analysis, multiobjective optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.