In this work, nanocomposites with simultaneous dispersion of multiwalled carbon nanotubes (MWCNT) and montmorillonite clays in an epoxy matrix were prepared by in situ polymerization. A high energy sonication was employed as the dispersion method, without the aid of solvents in the process. The simultaneous dispersion of clays with carbon nanotubes (CNT) in different polymeric matrices has shown a synergic potential of increasing mechanical properties and electrical conductivity. Two different montmorillonite clays were used: a natural (MMT‐Na+) and an organoclay (MMT‐30B). The nanocomposites had their electrical conductivity (σ) and dielectric constant (εr) measured by impedance spectroscopy. The sharp increase in electrical conductivity was found between 0.10 and 0.25 wt% of the MWCNTs. Transmission electron microscopy (TEM) of the samples showed a lower tendency of MWCNT segregation on the MMT‐30B clay surface, which is connected to intercalation/exfoliation in the matrix, that generates less free volume available for MWCNTs in the epoxy matrix. Data from electrical measurement showed that simultaneously adding organoclay reduces the electrical conduction in the nanocomposite. Moreover, conductivity and permittivity dispersion in low frequency suggest agglomeration of nanotubes surrounding the natural clay (MMT‐Na+) particles, which is confirmed by TEM. POLYM. COMPOS., 37:1603–1611, 2016. © 2014 Society of Plastics Engineers
Nanocomposites based on epoxy and a mixture of clays and multi-walled carbon nanotubes (MWCNT) were produced by casting, and also molded by RTM using glass fibers as reinforcement, yielding a hybrid multi-scale micro/nanocomposite material. Two types of montmorillonite clays were used, natural (MMT-Na) and organophilic (MMT-30B). Higher viscosity was obtained for the mixture with MMT-30B and it was observed that this clay did not perform as well as the MMT-Na in helping the dispersion of the carbon nanotubes (CNT). The glass transition temperature (T g) of the nanocomposites increased in up to 6 °C with the addition of MWCNT and up to 10 °C with the addition of MMT-30B, differently from the MMT-Na which did not alter the T g of the material. By transmission electron microscopy, it was verified that more homogeneous dispersions and more intercalated structures were obtained with the MMT-30B than with the MMT-Na. Finally, the low clay content used and, especially, the very low MWCNT content, did not significantly alter the studied flexural properties.
Epoxy/CNT and epoxy/CNT/calcium carbonate nanocomposites were produced via in situ polymerization assisted by ultrasonication without solvent and electrical, mechanical, thermal and thermomechanical properties of nanocomposites were evaluated. Epoxy/CNT presented very low percolation threshold, near 0.05 wt % and nanocomposites with higher contents of CNT presented further increase in electrical conductivity. The addition of calcium carbonate in epoxy/CNT nanocomposites increased the electrical conductivity, due to volume exclusion phenomena. Regarding thermal properties, due to the low content of the CNT and calcium carbonate no changes in glass transition (Tg) were observed. DMA results showed no significant changes in thermomechanical properties, once the contents of CNT and calcium carbonate are below stiffness threshold, however an increase of flexural modulus by adding CNT and calcium carbonate was observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.