Abstract. Long-term Web archives comprise Web documents gathered over longer time periods and can easily reach hundreds of terabytes in size. Semantic annotations such as named entities can facilitate intelligent access to the Web archive data. However, the annotation of the entire archive content on this scale is often infeasible. The most efficient way to access the documents within Web archives is provided through their URLs, which are typically stored in dedicated index files. The URLs of the archived Web documents can contain semantic information and can offer an efficient way to obtain initial semantic annotations for the archived documents. In this paper, we analyse the applicability of semantic analysis techniques such as named entity extraction to the URLs in a Web archive. We evaluate the precision of the named entity extraction from the URLs in the Popular German Web dataset and analyse the proportion of the archived URLs from 1,444 popular domains in the time interval from 2000 to 2012 to which these techniques are applicable. Our results demonstrate that named entity recognition can be successfully applied to a large number of URLs in our Web archive and provide a good starting point to efficiently annotate large scale collections of Web documents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.