Wireless sensor networks (WSNs) are important building blocks of the communication infrastructure in smart cities, intelligent transportation systems, Industry, Energy, and Agriculture 4.0, the Internet of Things, and other areas quickly adopting the concepts of fog and edge computing. Their cybernetic security is a major issue and efficient methods to improve their safety and reliability are required. Intrusion detection systems (IDSs) are complex systems that discover cybernetic attacks, detect malicious network traffic, and, in general, protect computer systems. Artificial neural networks are used by a variety of advanced intrusion detection systems with outstanding results.Their successful use in the specific conditions of WSNs requires efficient learning, adaptation, and inference. In this work, the acceleration of a neural intrusion detection model, developed specifically for wireless sensor networks, is proposed and studied, especially from the learning and classification accuracy and energy consumption points of view.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.