Convolutional Neural Networks (CNN) continue to dominate research in the area of hardware acceleration using Field Programmable Gate Arrays (FPGA), proving its effectiveness in a variety of computer vision applications such as object segmentation, image classification, face detection, and traffic signs recognition, among others. However, there are numerous constraints for deploying CNNs on FPGA, including limited on-chip memory, CNN size, and configuration parameters. This paper introduces Ad-MobileNet, an advanced CNN model inspired by the baseline MobileNet model. The proposed model uses an Ad-depth engine, which is an improved version of the depth-wise separable convolution unit. Moreover, we propose an FPGA-based implementation model that supports the Mish, TanhExp, and ReLU activation functions. The experimental results using the CIFAR-10 dataset show that our Ad-MobileNet has a classification accuracy of 88.76% while requiring little computational hardware resources. Compared to state-of-the-art methods, our proposed method has a fairly high recognition rate while using fewer computational hardware resources. Indeed, the proposed model helps to reduce hardware resources by more than 41% compared to that of the baseline model.
We need open platforms driven by specialists, in which queries can be created and collected for long periods and the diagnosis made, based on a rigorous clinical follow-up. In this work, we developed a multi-language robot interface helping to evaluate the mental health of seniors by interacting through questions. The specialist can propose questions, as well as to receive users' answers, in text form. The robot can automatically interact with the user using the appropriate language. It can process the answers and under the guidance of a specialist, questions and answers can be oriented towards the desired therapy direction. The prototype, was implemented on an embedded device meant for edge computing, thus it is able to filter environmental noise and can be placed anywhere at home. The experience is now available for specialists to create queries and answers through a Webbased interface.
Deep Learning techniques have been successfully applied to solve many Artificial Intelligence (AI) applications problems. However, owing to topologies with many hidden layers, Deep Neural Networks (DNNs) have high computational complexity, which makes their deployment difficult in contexts highly constrained by requirements such as performance, real-time processing, or energy efficiency. Numerous hardware/software optimization techniques using GPUs, ASICs, and reconfigurable computing (i.e, FPGAs), have been proposed in the literature. With FPGAs, very specialized architectures have been developed to provide an optimal balance between high-speed and low power. However, when targeting edge computing, user requirements and hardware constraints must be efficiently met. Therefore, in this work, we only focus on reconfigurable embedded systems based on the Xilinx ZYNQ SoC and popular DNNs that can be implemented on Embedded Edge improving performance per watt while maintaining accuracy. In this context, we propose an automated framework for the implementation of hardware-accelerated DNN architectures. This framework provides an end-to-end solution that facilitates the efficient deployment of topologies on FPGAs by combining custom hardware scalability with optimization strategies. Cutting-edge comparisons and experimental results demonstrate that the architectures developed by our framework offer the best compromise between performance, energy consumption, and system costs. For instance, the low power (0.266W) DNN topologies generated for the MNIST database achieved a high throughput of 3,626 FPS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.