Recently, the concept of microgrids (clusters of distributed generation, energy storage units, and reactive power sources serving a cluster of distributed loads in grid-connected and isolated grid modes) has gained a lot of interest under the smart grid vision. However, there is a strong need to develop systematic procedure for optimal construction of microgrids. This paper presents systematic and optimized approaches for clustering of the distribution system into a set of virtual microgrids with optimized self-adequacy. The probabilistic characteristics of distributed generation (DG) units are also considered by defining two new probabilistic indices representing real and reactive power of the lines. Next, the advantages of installing both distributed energy storage resources (DESRs) and distributed reactive sources (DRSs) are investigated to improve the self-adequacy of the constructed micro-grids. The new strategy facilitates robust infrastructure for smart distribution systems operational control functions, such as self-healing, by using virtual microgrids as building blocks in future distribution systems. The problem formulation and solution algorithms are presented in this paper. The well-known PG&E 69-bus distribution system is selected as a test case and through several sensitivity studies, the effect of the total DESRs or DRSs capacities on the design and the robustness of the algorithm are investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.