Global agricultural systems are under unprecedented pressures due to climate change. Advanced nano-engineering can help increase crop yields while ensuring sustainability. Nanotechnology improves agricultural productivity by boosting input efficiency and reducing waste. Alkaloids as one of the numerous secondary metabolites that serve variety of cellular functions essential for physiological processes. This study tests the competence of silver nanoparticles (AgNPs) in boosting alkaloids accumulation in Catharanthus roseus suspension cultures in relation to the expression of C. roseus Mitogen Activated Protein Kinase 3 (CrMPK3) and Strictosidine Synthase (STR) genes. Five concentrations (5, 10, 15, 20 and 25 mg·L−1) of AgNPs were utilized in addition to deionized water as control. Results reflected binary positive correlations among AgNPs concentration, oxidative stress indicated with increase in hydrogen peroxide and malondialdehyde contents, activities of ascorbate peroxidase and superoxide dismutase, expression of the regulatory gene CrMPK3 and the alkaloid biosynthetic gene STR as well as alkaloids accumulation. These correlations add to the growing evidence that AgNPs can trigger the accumulation of alkaloids in plant cells through a signaling pathway that involves hydrogen peroxide and MAPKs, leading to up-regulation of the biosynthetic genes, including STR gene.
This investigation was carried out for genetic characterization and determination of drought tolerance of ten Egyptian cultivars of wheat (Triticum aestivum L.), namely Misr 1, Misr 2, Gemmiza 9, Gemmiza 10, Gemmiza 11, Gemmiza 12, Shandawel 1, Giza 168, Giza 171, and Sids 14. These cultivars were grown in two winter seasons: 2018/2019 and 2019/2020 at the experimental farm Fac. of Agric., Suez Canal Univ., Ismailia, Egypt, under two watering regimes: normal (100%) and stress (50% FC) conditions. Six agronomic traits and five tolerance indices, namely stress tolerance (TOL), mean productivity (MP), geometric mean productivity (GMP), yield stability index (YSI), and drought susceptibility index (DSI), were used to evaluate the impact of drought stress. The results reflected Giza 171, Misr 2, and Giza 168 as precious germplasm for breeding of high-yielding drought-tolerant wheat. A highly significant positive correlation was recorded between yield under normal and stress conditions on the one hand and each of MP and GMP on the other hand. In addition, YSI appeared engaged in a highly significant positive correlation with yield under drought conditions only. TOL and DSI appeared insignificantly correlated with yield. Therefore, MP and GMP were reflected as the first runners among indices suitable to distinguish the high-yielding cultivars under drought conditions. At the molecular level, five primers of Start Codon Targeted (SCoT) markers were able to resolve and characterize the studied cultivars, which reflected SCoT as a potent gene-targeting molecular marker, able to characterize and resolve genetic diversity in wheat at the cultivar level using few primers. Therefore, SCoT is a time-efficient molecular marker, and it can efficiently replace indices in characterization of drought-tolerant genotypes with a high confidence level and reasonable cost.
No abstract
This paper provides an overview of the circular economy in Egypt. With the country facing significant environmental challenges, a circular economy approach can offer sustainable solutions to Egypt's environmental challenges by addressing issues like limited resources, waste generation, and a growing population in an eco-friendly and long-term perspective. This research employs a mixed-methods approach, including a literature review, surveys, and consultations with key stakeholders. The analysis reveals that although there are numerous challenges to establishing a circular economy in Egypt, such as limited understanding, insufficient government backing, and inadequate infrastructure, there are also opportunities, such as increasing demand for eco-friendly goods and services, as well as a receptive business environment. The paper recommends various policy and practical interventions to overcome these barriers and capitalize on these opportunities, including increasing awareness and understanding of the circular economy, developing supportive programs and regulations, investing in infrastructure and technology, and fostering stakeholder collaboration. This paper provides valuable insights into the potential for a circular economy in Egypt and the steps that can be taken to create a more sustainable future for the country. As such, it will interest policymakers, researchers, and practitioners working in the sustainability and environmental management field. The successful implementation of a circular economy in Egypt will require collective efforts from stakeholders to promote long-term sustainability and environmental stewardship.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.