Renewable energy has become an auspicious alternative to fossil fuel resources due to its sustainability and renewability. In this respect, Photovoltaics (PV) technology is one of the essential technologies. Today, more than 90 % of the global PV market relies on crystalline silicon (c-Si)-based solar cells. This article reviews the dynamic field of Si-based solar cells from high-cost crystalline to low-cost cells and investigates how to preserve high possible efficiencies while decreasing the cost. First, we discuss the various types of c-Si solar cells with different device architectures and report recent developments. Next, thin-film solar cells with their recent advancements are given. Then, Si nanowires solar cells and their recent results are discussed. Finally, we present the most encouraging tendencies in achieving low-cost solar cells utilizing cheap materials like heavily doped silicon wafers.
This paper aims to present a proposed npn solar cell microstructure based on low cost heavily doped Silicon wafers. The physical perception of the proposed structure is based on the idea of vertical generation and lateral collection of light generated carriers. It should be mentioned that our structure can be utilized whenever the diffusion length of photogenerated electron hole pairs is smaller than the penetration depth of the solar radiation. The enhancement in the structure performance is attained by the optimization of the structure technological and geometrical parameters and based on practical considerations. This enhancement enables achieving the maximum possible structure conversion efficiency. Moreover, the optical performance, in terms of the spectral response and external quantum efficiency, is presented. The optimization is carried out using SILVACO TCAD process and device simulators. The main parameters used in optimization include the thickness and doping of the top n
+ layer as well as the sidewall emitter. Additionally, the structure base width along with the notch depth are considered. Finally, back surface treatment is introduced. The structure conversion efficiency in the initial step before optimization was 10.7%. As a result of the optimization process, the structure conversion efficiency is improved to about 15% above the initial case study by 4%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.