The use of information technology and technological medical devices has contributed significantly to the transformation of healthcare. Despite that, many problems have arisen in diagnosing or predicting diseases, either as a result of human errors or lack of accuracy of measurements. Therefore, this paper aims to provide an integrated health monitoring system to measure vital parameters and diagnose or predict disease. Through this work, the percentage of various gases in the blood through breathing is determined, vital parameters are measured and their effect on feelings is analyzed. A supervised learning model is configured to predict and diagnose based on biometric measurements. All results were compared with the results of the Omron device as a reference device. The results proved that the proposed design overcame many problems as it contributed to expanding the database of vital parameters and providing analysis on the effect of emotions on vital indicators. The accuracy of the measurements also reached 98.8% and the accuracy of diagnosing COVID-19 was 64%. The work also presents a user interface model for clinicians as well as for smartphones using the Internet of things.
<span lang="EN-US">Military personnel in the training or operational phases always need constant medical examination, but the presence of efficient medical care is difficult to implement in real-time for such cases. A wireless system for thermal tracking of soldiers was proposed, as well as tracking their vital signs in real time. Thermal cameras are used with an optical system designed to increase the accuracy of the thermal images captured as the change in the electro-cardiogram, heart rate, and temperature measurements are measured using a specially designed circuit. The results from both the thermal system and the biometric system are combined and sent to a computer for analysis using a model prepared with neural network technology. The proposed system was tested, and a database was created for 127 males and 110 females during training and rest times. The neural network model achieved a response time of 85 seconds until the release of the final analysis, and the accuracy of the proposed tracking system is 96%. The main contribution of this paper is the design of an integrated portable system for rapid, in-field, real-time military medical diagnostics.</span>
<span lang="EN-US">Recently, some problems have appeared among medical workers during the diagnosis of some diseases due to human errors or the lack of sufficient information for the diagnosis. In medical diagnosis, doctors always resort to separating human emotions and their impact on vital parameters. In this paper, a methodology is presented to measure vital parameters more accurately while studying the effect of different human emotions on vital signs. Two designs were implemented based on the microcontroller and National Instruments (NI) myRIO. Measurements of four different vital parameters are measured and recorded in real time. At the same time, the effects of different emotions on those vital parameters are recorded and stored for use in analysis and early diagnosis. The results proved that the proposed methodology can contribute to the prediction and diagnosis of the initial symptoms of some diseases such as the seventh nerve and Parkinson’s disease. The two proposed designs are compared with the reference device (beurer) results. The design using NI myRIO achieved more accurate results and a response time of 1.4 seconds for real-time measurements compared to its counterpart based on microcontrollers, which qualifies it to work in intensive care units.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.