A quality improvement (QI) scheme was launched in 2017, covering a large group of 25 general practices working with a deprived registered population. The aim was to improve the measurable quality of care in a population where type 2 diabetes (T2D) care had previously proved challenging. A complex set of QI interventions were co-designed by a team of primary care clinicians and educationalists and managers. These interventions included organisation-wide goal setting, using a data-driven approach, ensuring staff engagement, implementing an educational programme for pharmacists, facilitating web-based QI learning at-scale and using methods which ensured sustainability. This programme was used to optimise the management of T2D through improving the eight care processes and three treatment targets which form part of the annual national diabetes audit for patients with T2D. With the implemented improvement interventions, there was significant improvement in all care processes and all treatment targets for patients with diabetes. Achievement of all the eight care processes improved by 46.0% (p<0.001) while achievement of all three treatment targets improved by 13.5% (p<0.001). The QI programme provides an example of a data-driven large-scale multicomponent intervention delivered in primary care in ethnically diverse and socially deprived areas.
Ensuring that medicines are prescribed safely is fundamental to the role of healthcare professionals who need to be vigilant about the risks associated with drugs and their interactions with other medicines (polypharmacy). One aspect of preventative healthcare is to use artificial intelligence to identify patients at risk using big data analytics. This will improve patient outcomes by enabling pre-emptive changes to medication on the identified cohort before symptoms present. This paper presents a mean-shift clustering technique used to identify groups of patients at the highest risk of polypharmacy. A weighted anticholinergic risk score and a weighted drug interaction risk score were calculated for each of 300,000 patient records registered with a major regional UK-based healthcare provider. The two measures were input into the mean-shift clustering algorithm and this grouped patients into clusters reflecting different levels of polypharmaceutical risk. Firstly, the results showed that, for most of the data, the average scores are not correlated and, secondly, the high risk outliers have high scores for one measure but not for both. These suggest that any systematic recognition of high-risk groups should consider both anticholinergic and drug–drug interaction risks to avoid missing high-risk patients. The technique was implemented in a healthcare management system and easily and automatically identifies groups at risk far faster than the manual inspection of patient records. This is much less labour-intensive for healthcare professionals who can focus their assessment only on patients within the high-risk group(s), enabling more timely clinical interventions where necessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.