We give a novel application of algebraic logic to first order logic. A new, flexible construction is presented for representable but not completely representable atomic relation and cylindric algebras of dimension n (for finite n > 2) with the additional property that they are one-generated and the set of all n by n atomic matrices forms a cylindric basis. We use this construction to show that the classical Henkin-Orey omitting types theorem fails for the finite variable fragments of first order logic as long as the number of variables available is > 2 and we have a binary relation symbol in our language. We also prove a stronger result to the effect that there is no finite upper bound for the extra variables needed in the witness formulas. This result further emphasizes the ongoing interplay between algebraic logic and first order logic.
Following research initiated by Tarski, Craig and Németi, and further pursued by Sain and others, we show that for certain subsets G of ω ω, G polyadic algebras have the strong amalgamation property. G polyadic algebras are obtained by restricting the (similarity type and) axiomatization of ω-dimensional polyadic algebras to finite quantifiers and substitutions in G. Using algebraic logic, we infer that some theorems of Beth, Craig and Robinson hold for certain proper extensions of first order logic (without equality).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.