International audienceThe matrix of a substitution is not sufficient to completely determine the dynamics associated, even in simplest cases since there are many words with the same abelianization. In this paper we study the common points of the canonical broken lines associated to two different Pisot irreducible substitutions $\sigma_1$ and $\sigma_2$ having the same incidence matrix. We prove that if 0 is inner point to the Rauzy fractal associated to $\sigma_1$ these common points can be generated with a substitution on an alphabet of so-called "balanced blocks"
Any infinite sequence of substitutions with the same matrix of the Pisot type defines a symbolic dynamical system which is minimal. We prove that, to any such sequence, we can associate a compact set (Rauzy fractal) by projection of the stepped line associated with an element of the symbolic system on the contracting space of the matrix. We show that this Rauzy fractal depends continuously on the sequence of substitutions, and investigate some of its properties; in some cases, this construction gives a geometric model for the symbolic dynamical system.
In this article we study symmetric subsets of Rauzy fractals of unimodular irreducible Pisot substitutions. The symmetry considered is reflection through the origin. Given an unimodular irreducible Pisot substitution, we consider the intersection of its Rauzy fractal with the Rauzy fractal of the reverse substitution. This set is symmetric and it is obtained by the balanced pair algorithm associated with both substitutions.
In this paper, we study cut sets of attractors of iteration function systems (IFS) in R d . Under natural conditions, we show that all irreducible cut sets of these attractors are perfect sets or single points. This leads to a criterion for the existence of cut points of IFS attractors. If the IFS attractors are self-affine tiles, our results become algorithmically checkable and can be used to exhibit cut points with the help of Hata graphs. This enables us to construct cut points of some self-affine tiles studied in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.