Aerial manipulation has direct application prospects in environment, construction, forestry, agriculture, search, and rescue. It can be used to pick and place objects and hence can be used for transportation of goods. Aerial manipulation can be used to perform operations in environments inaccessible or unsafe for human workers. This paper is a survey of recent research in aerial manipulation. The aerial manipulation research has diverse aspects, which include the designing of aerial manipulation platforms, manipulators, grippers, the control of aerial platform and manipulators, the interaction of aerial manipulator with the environment, through forces and torque. In particular, the review paper presents the survey of the airborne platforms that can be used for aerial manipulation including the new aerial platforms with aerial manipulation capability. We also classified the aerial grippers and aerial manipulators based on their designs and characteristics. The recent contributions regarding the control of the aerial manipulator platform is also discussed. The environment interaction of aerial manipulators is also surveyed which includes, different strategies used for end-effectors interaction with the environment, application of force, application of torque and visual servoing. A recent and growing interest of researchers about the multi-UAV collaborative aerial manipulation was also noticed and hence different strategies for collaborative aerial manipulation are also surveyed, discussed and critically analyzed. Some key challenges regarding outdoor aerial manipulation and energy constraints in aerial manipulation are also discussed.
In this paper, a novel dual-UAV collaborative aerial transport strategy based on energy distribution and load sharing is proposed. This paper presents the first experimental demonstration of dual-UAV collaborative aerial transport while distributing power consumption. The demonstration is performed while distributing the power consumption between two drones sharing a load based on their battery state of charge. A numerical model of the dual-hex-rotor-payload is used to validate the proposed strategy. Numerical and hardware tests were conducted to demonstrate the load distribution using multiple UAV with certain spatial configurations. Finally, collaborative aerial transport test scenarios are performed numerically and experimentally. The simulation and experimental results show the effectiveness and applicability of the proposed strategy.
In this paper, a real-time dynamic programming (RTDP) approach was developed for the first time to jointly carry a slung load using two unmanned aerial vehicles (UAVs) with a trajectory optimized for time and energy consumption. The novel strategy applies RTDP algorithm, where the journey was discretized into horizons consisting of distance intervals, and for every distance interval, an optimal policy was obtained using a dynamic programming sweep. The RTDP-based strategy is applied for dual-UAV collaborative payload transportation using coordinated motion where UAVs act as actuators on the payload. The RTDP algorithm provides the optimal velocity decisions for the slung load transportation to either minimize the journey time or the energy consumption. The RTDP approach involves minimizing a cost function which is derived after simplifying the combined model of the dual-UAV-payload system. The cost function derivation was also accommodated to dynamically distribute the load/energy between two multi-rotor platforms during a transportation mission. The cost function is used to calculate transition costs for all stages and velocity decisions. A terminal cost is used at the last distance interval during the first phase of the journey when the velocity at the end of the current horizon is not known. In the second phase, the last stage or edge of the horizon includes the destination, hence final velocity is known which is used to calculate the transition cost of the final stage. Once all transition costs are calculated, the minimum cost is traced back from the final stage to the current stage to find the optimal velocity decision. The developed approach was validated in MATLAB simulation, software in the loop Gazebo simulation, and real experiments. The numerical and Gazebo simulations showed the successful optimization of journey time or energy consumption based on the selection of the factor λ. Both simulation and real experiments results show the effectiveness and the applicability of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.