In this work, we design a new pressure sensor based on two-dimensional photonic crystal waveguide coupled to a point-defect resonant microcavity. The mechanism of sensing is based on the change of the germanium refractive index as function of the hydrostatic pressure P . The resonant wavelength will shift when pressure variation induces change in the refractive indexes of the structure. The pressure variation causes the shifting of defect modes. The properties of the refractive index sensor are simulated using the finite-difference time-domain algorithm and the plane wave expansion method. These kinds of sensors have many advantages in compactness, high sensitivity, and various choices of materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.