Objective
To evaluate whether HRV measures are predictive of neurological outcome in babies with hypoxic ischemic encephalopathy (HIE).
Study Design
This case-control investigation included 20 term encephalopathic newborns treated with systemic hypothermia in a regional NICU. Electrocardiographic data were collected continuously during hypothermia. Spectral analysis of beat-to-beat heart rate interval was used to quantify HRV. HRV measures were compared between infants with adverse outcome (death or neurodevelopmental impairment at 15 months, n=10) and those with favorable outcome (survivors without impairment, n=10).
Results
HRV differentiated infants by outcome during hypothermia through post-rewarming, with the best distinction between groups at 24 hours and after 80 hours of life.
Conclusions
HRV during hypothermia treatment distinguished HIE babies who subsequently died or had neurodevelopmental impairment from intact survivors. This physiological biomarker may identify infants in need of adjuvant neuroprotective interventions. These findings warrant further investigation in a larger population of infants with HIE.
Background
Decreased heart rate variability (HRV) is a measure of autonomic dysfunction and brain injury in newborns with hypoxic ischemic encephalopathy (HIE). This study aimed to characterize the relationship between HRV and brain injury pattern by MRI in newborns with HIE undergoing therapeutic hypothermia.
Methods
HRV metrics were quantified in the time domain (αS, αL, and root mean square at short [RMSS] and long [RMSL] time scales) and frequency domain (relative low-[LF] and high-frequency [HF] power) during the time period 24–27 hours of life. Brain injury pattern by MRI was classified as no injury, pure cortical/white matter injury, mixed watershed/mild basal nuclei injury, predominant basal nuclei or global injury, and died. HRV metrics were compared across brain injury pattern groups using a random effects mixed model.
Results
Data from 74 infants were analyzed. Brain injury pattern was significantly associated with degree of HRV suppression. Specifically, negative associations were observed between pattern of brain injury and RMSS (estimate −0.224, SE 0.082, p=0.006), RMSL (estimate −0.189, SE 0.082, p=0.021), and LF power (estimate −0.044, SE 0.016, p=0.006).
Conclusion
Degree of HRV depression is related to pattern of brain injury. HRV monitoring may provide insights into pattern of brain injury at the bedside.
We performed detrended fluctuation analysis (DFA) of cardiac beat-to-beat intervals (RRis) collected from sick newborn infants over 1-4 day periods. We calculated four different metrics from the DFA fluctuation function: the DFA exponents αL (>40 beats up to one-fourth of the record length), αs (15-30 beats), root-mean-square (RMS) fluctuation on a short-time scale (20-50 beats), and RMS fluctuation on a long-time scale (110-150 beats). Except αL, all metrics clearly distinguished two groups of newborn infants (favourable vs. adverse) with well-characterized outcomes. However, the RMS fluctuations distinguished the two groups more consistently over time compared to αS. Furthermore, RMS distinguished the RRi of the two groups earlier compared to the DFA exponent. In all the three measures, the favourable outcome group displayed higher values, indicating a higher magnitude of (auto-)correlation and variability, thus normal physiology, compared to the adverse outcome group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.