Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9-2.1)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay.
We have recently found that suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, improves survival in a lethal model of hemorrhagic shock in rats. The purpose of the present study was to determine whether SAHA treatment would prevent LPS-induced septic shock and improve the survival in a murine model. C57BL/6J mice were randomly divided into two groups. Experimental mice were given intraperitoneal SAHA (50 mg/kg) in vehicle dimethyl sulfoxide fluid (n = 10). The control mice (n = 10) received vehicle dimethyl sulfoxide only. They were injected with LPS (20 mg/kg, i.p.) 2 h later, and the animals from the treatment group were given a second dose of SAHA. Survival was monitored during the next 7 days. In a parallel study, mice treated with or without SAHA were subjected to LPS insult while normal (sham) mice serviced as controls. 1) Lungs were harvested at 3 and 48 h for analysis of gene expression and pathologic changes, respectively; 2) spleens were isolated for analysis of neutrophilic cell population. In addition, RAW264.7 mouse macrophages were cultured to assess the effects of SAHA on LPS-induced inflammation in vitro. All mice in the control group that were subjected to LPS challenge died in less than 48 h. However, SAHA-treated animals displayed a significantly higher 1-week survival rate (87.5%) compared with the control group (0%). Moreover, LPS insult decreased the acetylation of histone proteins (H2A, H2B, and H3), elevated the levels of TNF-alpha in vivo (circulation) and in vitro (culture medium), increased the neutrophilic cell population in the spleen, enhanced the expression of TNF-alpha and IL-1beta genes in lung tissue, and augmented the pulmonary neutrophil infiltration. In contrast, SAHA treatment markedly attenuated all of these LPS-induced alterations. We report for the first time that administration of SAHA (50 mg/kg) significantly attenuates a variety of inflammatory markers and improves long-term survival after a lethal LPS insult.
The induction of hypothermia for cellular protection is well established in several clinical settings. Its role in trauma patients, however, is controversial. This review discusses the benefits and complications of induced hypothermia--emphasizing the current state of knowledge and potential applications in bleeding patients. Extensive pre-clinical data suggest that in advanced stages of shock, rapid cooling can protect cells during ischemia and reperfusion, decrease organ damage, and improve survival. Yet hypothermia is a double edged sword; unless carefully managed, its induction can be associated with a number of complications. Appropriate patient selection requires a thorough understanding of the pre-clinical literature. Clinicians must also appreciate the enormous influence that temperature modulation exerts on various cellular mechanisms. This manuscript aims to provide a balanced view of the published literature on this topic. While many of the advantageous molecular and physiological effects of induced hypothermia have been outlined in animal models, rigorous clinical investigations are needed to translate these promising findings into clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.