Abstract. The typical constraint store transmits a limited amount of information because it consists only of variable domains. We propose a richer constraint store in the form of a limited-width multivalued decision diagram (MDD). It reduces to a traditional domain store when the maximum width is one but allows greater pruning of the search tree for larger widths. MDD propagation algorithms can be developed to exploit the structure of particular constraints, much as is done for domain filtering algorithms. We propose specialized propagation algorithms for alldiff and inequality constraints. Preliminary experiments show that MDD propagation solves multiple alldiff problems an order of magnitude more rapidly than traditional domain propagation. It also significantly reduces the search tree for inequality problems, but additional research is needed to reduce the computation time.
Abstract.We present an incremental refinement algorithm for approximate compilation of constraint satisfaction models into multivalued decision diagrams (MDDs). The algorithm uses a vertex splitting operation that relies on detection of equivalent paths in the MDD. Although the algorithm is quite general, it can be adapted to exploit constraint structure by specializing the path equivalence test to particular constraints. We show how to modify the algorithm in a principled way to obtain an approximate MDD when the exact MDD is too large for practical purposes. This is done by replacing the equivalence test with a constraint-specific measure of distance. We demonstrate the value of the approach for approximate and exact MDD compilation and evaluate its benefits in one of the main MDD application domains, interactive configuration.
In many AI domains such as product configuration, a user should interactively specify a solution that must satisfy a set of constraints. In such scenarios, offline compilation of feasible solutions into a tractable representation is an important approach to delivering efficient backtrack-free user interaction online. In particular,binary decision diagrams (BDDs) have been successfully used as a compilation target for product and service configuration. In this paper we discuss how to extend BDD-based configuration to scenarios involving cost functions which express user preferences. We first show that an efficient, robust and easy to implement extension is possible if the cost function is additive, and feasible solutions are represented using multi-valued decision diagrams (MDDs). We also discuss the effect on MDD size if the cost function is non-additive or if it is encoded explicitly into MDD. We then discuss interactive configuration in the presence of multiple cost functions. We prove that even in its simplest form, multiple-cost configuration is NP-hard in the input MDD. However, for solving two-cost configuration we develop a pseudo-polynomial scheme and a fully polynomial approximation scheme. The applicability of our approach is demonstrated through experiments over real-world configuration models and product-catalogue datasets. Response times are generally within a fraction of a second even for very large instances
We develop a set of solution techniques for realtime evacuation guidance of pedestrians during emergency, focusing on evacuation from buildings during a fire. We model the problem as an extension of a dynamic network flow by allowing for nodes and edges to expire over time. This captures evacuation situations where the spreading hazard renders parts of the network unavailable. We formally state the problem, analyze its complexity, develop a set of heuristic approaches and compare their performance against a number of most relevant alternative approaches. We experimentally demonstrate that our heuristics outperform the alternatives and are suitable for real-time use even for large networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.