Moments and functions of moments have been extensively employed as invariant global features of images in pattern recognition. In this study, a flexible recognition system that can compute the good features for high classification of 3-D real objects is investigated. For object recognition, regardless of orientation, size and position, feature vectors are computed with the help of nonlinear moment invariant functions. Representations of objects using two-dimensional images that are taken from different angles of view are the main features leading us to our objective. After efficient feature extraction, the main focus of this study, the recognition performance of classifiers in conjunction with moment-based feature sets, is introduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.