In this study, we report Ralstonia solanacearum pathogenicity in the early stages of tomato seedlings by an innovative root inoculation method. Pathogenicity assays were performed under gnotobiotic conditions in microfuge tubes by employing only 6- to 7-day-old tomato seedlings for root inoculation. Tomato seedlings inoculated by this method exhibited the wilted symptom within 48 h and the virulence assay can be completed in 2 weeks. Colonization of the wilted seedlings by R. solanacearum was confirmed by using gus staining as well as fluorescence microscopy. Using this method, mutants in different virulence genes such as hrpB, phcA, and pilT could be clearly distinguished from wild-type R. solanacearum. The method described here is economic in terms of space, labor, and cost as well as the required quantity of bacterial inoculum. Thus, the newly developed assay is an easy and useful approach for investigating virulence functions of the pathogen at the seedling stage of hosts, and infection under these conditions appears to require pathogenicity mechanisms used by the pathogen for infection of adult plants.
Ralstonia solanacearum is a phytopathogenic bacterium that colonizes the xylem vessels of host plants leading to a lethal wilt disease. Although several studies have investigated the virulence of R. solanacearum on adult host plants, infection studies of this pathogen on the seedling stages of hosts are less common. In a preliminary observation, inoculation of R. solanacearum F1C1 on 6-to 7-day-old tomato seedlings by a simple leaf-clip strategy resulted in a lethal pathogenic condition in seedlings that eventually killed these seedlings within a week post-inoculation. This prompted testing of the effect of this inoculation technique in seedlings from different cultivars of tomato and similar results were obtained. Colonization and spread of the bacteria throughout the infected seedlings was demonstrated using gus-tagged R. solanacearum F1C1. The same method of inoculating tomato seedlings was used with R. solanacearum GMI1000 and independent mutants of R. solanacearum GMI1000, deficient in the virulence genes hrpB, hrpG, phcA and gspD. Wildtype R. solanacearum GMI1000 was found to be virulent on tomato seedlings, whereas the mutants were found to be non-virulent. This leaf-clip technique, for inoculation of tomato seedlings, has the potential to be a valuable approach, saving time, space, labour and costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.