Figure 1: (Left) An input mesh of quads induces a cross field with an entangled graph of separatrices defining almost eight thousand domains; (center) the graph is disentangled with small distortion from the input field to obtain just twenty parametrization domains; (right) parametrization is smoothed to make it conformal; an example of remeshing from the parametrization.
D 4 sampling Figure 1: A range image set and its parametrization. A set of range images U i is captured by direct measurement of real world objects or by means of digital rendering of virtual objects. Each range scan U i is mapped over a domain D i by a parametrization function c i , in a globally consistent way. Among other uses, a semi-regular quad remeshing of the original object can be obtained by regularly sampling ∪D i . AbstractWe present a method to globally parameterize a surface represented by height maps over a set of planes (range images). In contrast to other parametrization techniques, we do not start with a manifold mesh. The parametrization we compute defines a manifold structure, it is seamless and globally smooth, can be aligned to geometric features and shows good quality in terms of angle and area preservation, comparable to current parametrization techniques for meshes. Computing such global seamless parametrization makes it possible to perform quad remeshing, texture mapping and texture synthesis and many other types of geometry processing operations. Our approach is based on a formulation of the Poisson equation on a manifold structure defined for the surface by the range images. Construction of such global parametrization requires only a way to project surface data onto a set of planes, and can be applied directly to implicit surfaces, nonmanifold surfaces, very large meshes, and collections of range scans. We demonstrate application of our technique to all these geometry types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.