The main objective of this paper is to obtain generalization of some Grusstype inequalities in case of functional bounds by using a generalized Katugampola fractional integral.
Expanding the analytical aspect of mathematics enables researchers to study more cosmic phenomena, especially with regard to the applied sciences related to fractional calculus. In the present paper, we establish some Chebyshev-type inequalities in the case synchronous functions. In order to achieve our goals, we use
k
,
ψ
-proportional fractional integral operators. Moreover, we present some special cases.
The purpose of this research was to discover a novel method to recover k-fractional integral inequalities of the Pólya–Szegö-type. We employ these generalized inequalities to investigate some new fractional integral inequalities of the Grüss-type. More precisely, we generalize the proportional fractional operators with respect to another strictly increasing continuous function ψ. Then, we state and prove some of its properties and special cases. With the help of this generalized operator, we investigate some Pólya–Szegö- and Grüss-type fractional integral inequalities. The functions used in this work are bounded by two positive functions to obtain Pólya–Szegö- and Grüss-type k-fractional integral inequalities in a new sense. Moreover, we discuss some new special cases of the Pólya–Szegö- and Grüss-type inequalities through this work.
This research paper is dedicated to an investigation of an evolution problem under a new operator (g-Atangana–Baleanu–Caputo type fractional derivative)(for short, g-ABC). For the proposed problem, we construct sufficient conditions for some properties of the solution like existence, uniqueness and stability analysis. Existence and uniqueness results are proved based on some fixed point theorems such that Banach and Krasnoselskii. Furthermore, through mathematical analysis techniques, we analyze different types of stability results. The symmetric properties aid in identifying the best strategy for getting the correct solution of fractional differential equations. An illustrative example is discussed for the control problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.