Tuberculosis (TB) is one of the most fatal infectious diseases and a leading cause of mortality, with 95% of these deaths occurring in developing countries. The causative agent, Mycobacterium tuberculosis (Mtb), has a well-established ability to circumvent the host’s immune system for its intracellular survival. microRNAs (miRNAs) are small, non-coding RNAs having an important function at the post-transcriptional level and are involved in shaping immunity by regulating the repertoire of genes expressed in immune cells. It has been established in recent studies that the innate immune response against TB is significantly regulated by miRNAs. Moreover, differential expression of miRNA in Mtb infection can reflect the disease progression and may help distinguish between active and latent TB infection (LTBI). These findings encouraged the application of miRNAs as potential biomarkers. Similarly, active participation of miRNAs in modulation of autophagy and apoptosis responses against Mtb opens an exciting avenue for the exploitation of miRNAs as host directed therapy (HDT) against TB. Nanoparticles mediated delivery of miRNAs to treat various diseases has been reported and this technology has a great potential to be used in TB. In reality, this exploitation of miRNAs as biomarkers and in HDT is still in its infancy stage, and more studies using animal models mimicking human TB are advocated to assess the role of miRNAs as biomarkers and therapeutic targets. In this review, we attempt to summarize the recent advancements in the role of miRNAs in TB as immune modulator, miRNAs’ capability to distinguish between active and latent TB and, finally, usage of miRNAs as therapeutic targets against TB.
Advances in the diagnosis and management of congenital heart disease have led to a marked improvement in the survival of adult with congenital heart disease (ACHD) patients. However, ACHD patients are a heterogeneous population, with a large spectrum of anatomic substrates even within specific lesions. In addition, the nature of previous surgery and other intervention is highly variable rendering each patient unique and residual anatomic and haemodynamic abnormalities are very common. As the ACHD population continues to age, acquired heart disease will also require cardiac imaging assessment. It is increasingly recognized in ACHD community that the diagnostic utility of a multimodality cardiovascular approach is greater than the sum of individual tests. In ACHD patients, diagnostic information can be obtained using a variety of diagnostic tools. The aims of this document are to describe the role of each diagnostic modality in the care of ACHD patients and to provide guidelines for a multimodality approach. The goal should be to provide the most appropriate and cost-effective diagnostic pathway for each individual ACHD patient.
Objectives: Matrix metalloproteinase 9 (MMP-9) has been frequently noticed in the breast cancers. In this study, we aim to investigate the associations of MMP-9 with the activation of transforming growth factor beta (TGF-β)/SMAD signalling and the malignancy of breast malignant tumour cells. Materials and methods:The distributions of MMP-9 and TGF-β in the tissues of canine breast cancers were screened by immunohistochemical assays. A recombinant plasmid expressing mouse MMP-9 was generated and transiently transfected into three different breast cancer cell lines. Cell Counting Kit-8 and colony formation assay were used to study cell viability. Migration and invasion ability were analysed by wound assay and transwell filters. Western blot and quantitative real-time PCR were used to determine the protein and mRNA expression.Result: Remarkable strong MMP-9 and TGF-β signals were observed in the malignant tissues of canine breast cancers. In the cultured three cell lines receiving recombinant plasmid expressing mouse MMP-9, the cell malignancy was markedly increased, including the cell colony formation, migration and epithelial-mesenchymal transition.The levels of activated TGF-β, as well as SMAD4, SMAD2/3 and phosphorylation of SMAD2, were increased, reflecting an activation of TGF-β/SMAD signalling. We also demonstrated that the inhibitors specific for MMP-9 and TGF-β sufficiently blocked the overexpressing MMP-9 induced the activation of SMAD signalling and enhancement on invasion in the tested breast cancer cell lines. Conclusion:Overexpression of MMP-9 increases the malignancy of breast cancer cell lines, largely via activation of the TGF-β/SMAD signalling.
Mycobacterium tuberculosis ( Mtb ) leads to approximately 1.5 million human deaths every year. In pulmonary tuberculosis (TB), Mtb must drive host tissue destruction to cause pulmonary cavitation and dissemination in the tissues. Matrix metalloproteinases (MMPs) are endopeptidases capable of degrading all components of pulmonary extracellular matrix (ECM). It is well established that Mtb infection leads to upregulation of MMPs and also causes disturbance in the balance between MMPs and tissue inhibitors of metalloproteinases (TIMPs), thus altering the extracellular matrix deposition. In TB, secretion of MMPs is mainly regulated by NF‐κB, p38 and MAPK signalling pathways. In addition, recent studies have demonstrated the immunomodulatory roles of MMPs in Mtb pathogenesis. Researchers have proposed a new regimen of improved TB treatment by inhibition of MMP activity to hinder matrix destruction and to minimize the TB‐associated morbidity and mortality. The proposed regimen involves adjunctive use of MMP inhibitors such as doxycycline, marimastat and other related drugs along with front‐line anti‐TB drugs to reduce granuloma formation and bacterial load. These findings implicate the possible addition of economical and well‐tolerated MMP inhibitors to current multidrug regimens as an attractive mean to increase the drug potency. Here, we will summarize the recent advancements regarding expression of MMPs in TB, their immunomodulatory role, as well as their potential as therapeutic targets to control the deadly disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.