Dementia and Alzheimer’s disease are caused by neurodegeneration and poor communication between neurons in the brain. So far, no effective medications have been discovered for dementia and Alzheimer’s disease. Thus, early diagnosis is necessary to avoid the development of these diseases. In this study, efficient machine learning algorithms were assessed to evaluate the Open Access Series of Imaging Studies (OASIS) dataset for dementia diagnosis. Two CNN models (AlexNet and ResNet-50) and hybrid techniques between deep learning and machine learning (AlexNet+SVM and ResNet-50+SVM) were also evaluated for the diagnosis of Alzheimer’s disease. For the OASIS dataset, we balanced the dataset, replaced the missing values, and applied the t-Distributed Stochastic Neighbour Embedding algorithm (t-SNE) to represent the high-dimensional data in the low-dimensional space. All of the machine learning algorithms, namely, Support Vector Machine (SVM), Decision Tree, Random Forest and K Nearest Neighbours (KNN), achieved high performance for diagnosing dementia. The random forest algorithm achieved an overall accuracy of 94% and precision, recall and F1 scores of 93%, 98% and 96%, respectively. The second dataset, the MRI image dataset, was evaluated by AlexNet and ResNet-50 models and AlexNet+SVM and ResNet-50+SVM hybrid techniques. All models achieved high performance, but the performance of the hybrid methods between deep learning and machine learning was better than that of the deep learning models. The AlexNet+SVM hybrid model achieved accuracy, sensitivity, specificity and AUC scores of 94.8%, 93%, 97.75% and 99.70%, respectively.
Stroke and cerebral haemorrhage are the second leading causes of death in the world after ischaemic heart disease. In this work, a dataset containing medical, physiological and environmental tests for stroke was used to evaluate the efficacy of machine learning, deep learning and a hybrid technique between deep learning and machine learning on the Magnetic Resonance Imaging (MRI) dataset for cerebral haemorrhage. In the first dataset (medical records), two features, namely, diabetes and obesity, were created on the basis of the values of the corresponding features. The t-Distributed Stochastic Neighbour Embedding algorithm was applied to represent the high-dimensional dataset in a low-dimensional data space. Meanwhile, the Recursive Feature Elimination algorithm (RFE) was applied to rank the features according to priority and their correlation to the target feature and to remove the unimportant features. The features are fed into the various classification algorithms, namely, Support Vector Machine (SVM), K Nearest Neighbours (KNN), Decision Tree, Random Forest, and Multilayer Perceptron. All algorithms achieved superior results. The Random Forest algorithm achieved the best performance amongst the algorithms; it reached an overall accuracy of 99%. This algorithm classified stroke cases with Precision, Recall and F1 score of 98%, 100% and 99%, respectively. In the second dataset, the MRI image dataset was evaluated by using the AlexNet model and AlexNet + SVM hybrid technique. The hybrid model AlexNet + SVM performed is better than the AlexNet model; it reached accuracy, sensitivity, specificity and Area Under the Curve (AUC) of 99.9%, 100%, 99.80% and 99.86%, respectively.
The Internet of Things (IoT) has the potential to transform the public sector by combining the leading technical and business trends of mobility, automation, and data analysis to dramatically alter the way public bodies collect data and information. Embedded sensors, actuators, and other devices that capture and transmit information about network activity in real-time are used in the Internet of Things to connect networks of physical objects. The design of a network management system for an IoT network is presented in this paper, which uses the edge computing model. This design is based on the Internet management model, which uses the SNMP protocol to communicate between managed devices, and a gateway, which uses the SOAP protocol to communicate with a management application. This work allowed for the identification and analysis of the primary network management system initiatives for IoT networks, in which there are four fundamental device management requirements for any deployment of IoT devices: provisioning and authentication, configuration and control, monitoring and diagnostics, and software updates and maintenance.
Intracranial hemorrhaging is considered a type of disease that affects the brain and is very dangerous, with high-mortality cases if there is no rapid diagnosis and prompt treatment. CT images are one of the most important methods of diagnosing intracranial hemorrhages. CT images contain huge amounts of information, requiring a lot of experience and taking a long time for proper analysis and diagnosis. Thus, artificial intelligence techniques provide an automatic mechanism for evaluating CT images to make a diagnosis with high accuracy and help radiologists make their diagnostic decisions. In this study, CT images for rapid detection of intracranial hemorrhages are diagnosed by three proposed systems with various methodologies and materials, where each system contains more than one network. The first system is proposed by three pretrained deep learning models, which are GoogLeNet, ResNet-50 and AlexNet. The second proposed system using a hybrid technology consists of two parts: the first part is the GoogLeNet, ResNet-50 and AlexNet models for extracting feature maps, while the second part is the SVM algorithm for classifying feature maps. The third proposed system uses artificial neural networks (ANNs) based on the features of the GoogLeNet, ResNet-50 and AlexNet models, whose dimensions are reduced by a principal component analysis (PCA) algorithm, and then the low-dimensional features are combined with the features of the GLCM and LBP algorithms. All the proposed systems achieved promising results in the diagnosis of CT images for the rapid detection of intracranial hemorrhages. The ANN network based on fusion of the deep feature of AlexNet with the features of GLCM and LBP reached an accuracy of 99.3%, precision of 99.36%, sensitivity of 99.5%, specificity of 99.57% and AUC of 99.84%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.