The Internet of Things (IoT) has the potential to transform the public sector by combining the leading technical and business trends of mobility, automation, and data analysis to dramatically alter the way public bodies collect data and information. Embedded sensors, actuators, and other devices that capture and transmit information about network activity in real-time are used in the Internet of Things to connect networks of physical objects. The design of a network management system for an IoT network is presented in this paper, which uses the edge computing model. This design is based on the Internet management model, which uses the SNMP protocol to communicate between managed devices, and a gateway, which uses the SOAP protocol to communicate with a management application. This work allowed for the identification and analysis of the primary network management system initiatives for IoT networks, in which there are four fundamental device management requirements for any deployment of IoT devices: provisioning and authentication, configuration and control, monitoring and diagnostics, and software updates and maintenance.
Studies carried out by researchers show that data growth can be exploited in such a way that the use of deep learning algorithms allow predictions with a high level of precision based on the data, which is why the latest studies are focused on the use of convolutional neural networks as the optimal algorithm for image classification. The present research work has focused on making the diagnosis of a disease that affects the cornea called keratoconus through the use of deep learning algorithms to detect patterns that will later be used to carry out preventive detections. The algorithm used to perform the classifications has been convolutional neural networks as well as image preprocessing to remove noise that can limit neural network learning, resulting in more than 1900 classified images out of a total of >2000 images distributed between normal eyes and those with keratoconus, which is equivalent to 92%.
Machine learning is a branch of computing that studies the design of algorithms with the ability to “learn.” A subfield would be deep learning, which is a series of techniques that make use of deep artificial neural networks, that is, with more than one hidden layer, to computationally imitate the structure and functioning of the human organ and related diseases. The analysis of health interest images with deep learning is not limited to clinical diagnostic use. It can also, for example, facilitate surveillance of disease-carrying objects. There are other examples of recent efforts to use deep learning as a tool for diagnostic use. Chest X-rays are one approach to identify tuberculosis; by analysing the X-ray, you can spot any abnormalities. A method for detecting the presence of tuberculosis in medical X-ray imaging is provided in this paper. Three different classification methods were used to evaluate the method: support vector machines, logistic regression, and nearest neighbors. Cross-validation and the formation of training and test sets were the two classification scenarios used. The acquired results allow us to assess the method’s practicality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.