These findings establish SCN3A as a new gene for infantile epileptic encephalopathy and suggest a potential pharmacologic intervention. These findings also reinforce the role of Nav1.3 as an important regulator of neuronal excitability in the developing brain, while providing additional insight into mechanisms of slow inactivation of Nav1.3. Ann Neurol 2018;83:703-717.
Neurons of the reticular thalamus (RT) display oscillatory burst discharges that are believed to be critical for thalamocortical network oscillations related to absence epilepsy. Ca²+-dependent mechanisms underlie such oscillatory discharges. However, involvement of high-voltage activated (HVA) Ca²+ channels in this process has been discounted. We examined this issue closely using mice deficient for the HVA Ca(v)2.3 channels. In brain slices of Ca(v)2.3⁻/⁻, a hyperpolarizing current injection initiated a low-threshold burst of spikes in RT neurons; however, subsequent oscillatory burst discharges were severely suppressed, with a significantly reduced slow afterhyperpolarization (AHP). Consequently, the lack of Ca(v)2.3 resulted in a marked decrease in the sensitivity of the animal to γ-butyrolactone-induced absence epilepsy. Local blockade of Ca(v)2.3 channels in the RT mimicked the results of Ca(v)2.3⁻/⁻ mice. These results provide strong evidence that Ca(v)2.3 channels are critical for oscillatory burst discharges in RT neurons and for the expression of absence epilepsy.
Objective
Pathogenic variants in SCN8A, encoding the voltage‐gated sodium (Na+) channel α subunit Nav1.6, is a known cause of epilepsy. Here, we describe clinical and genetic features of all patients with SCN8A epilepsy evaluated at a single‐tertiary care center, with biophysical data on identified Nav1.6 variants and pharmacological response to selected Na+ channel blockers.
Methods
SCN8A variants were identified via an exome‐based panel of epilepsy‐associated genes for next generation sequencing (NGS), or via exome sequencing. Biophysical characterization was performed using voltage‐clamp recordings of ionic currents in heterologous cells.
Results
We observed a range in age of onset and severity of epilepsy and associated developmental delay/intellectual disability. Na+ channel blockers were highly or partially effective in most patients. Nav1.6 variants exhibited one or more biophysical defects largely consistent with gain of channel function. We found that clinical severity was correlated with the presence of multiple observed biophysical defects and the extent to which pathological Na+ channel activity could be normalized pharmacologically. For variants not previously reported, functional studies enhanced the evidence of pathogenicity.
Interpretation
We present a comprehensive single‐center dataset for SCN8A epilepsy that includes clinical, genetic, electrophysiologic, and pharmacologic data. We confirm a spectrum of severity and a variety of biophysical defects of Nav1.6 variants consistent with gain of channel function. Na+ channel blockers in the treatment of SCN8A epilepsy may correlate with the effect of such agents on pathological Na+ current observed in heterologous systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.