Background—Cardiac remodeling occurs in response to regular athletic training, and the degree of remodeling is associated with fitness. Understanding the myocardial structural changes in athlete’s heart is important to develop tools that differentiate athletic from cardiomyopathic change. We hypothesized that athletic left ventricular hypertrophy is a consequence of increased myocardial cellular rather than extracellular mass as measured by cardiovascular magnetic resonance.Methods and Results—Forty-five males (30 athletes and 15 sedentary age-matched healthy controls) underwent comprehensive cardiovascular magnetic resonance studies, including native and postcontrast T1 mapping for extracellular volume calculation. In addition, the 30 athletes performed a maximal exercise test to assess aerobic capacity and anaerobic threshold. Participants were grouped by athleticism: untrained, low performance, and high performance (O2max <60 or>60 mL/kg per min, respectively). In athletes, indexed cellular mass was greater in high- than low-performance athletes 60.7±7.5 versus 48.6±6.3 g/m2; P<0.001), whereas extracellular mass was constant (16.3±2.2 versus 15.3±2.2 g/m2; P=0.20). Indexed left ventricular end-diastolic volume and mass correlated with O2max (r=0.45, P=0.01; r=0.55, P=0.002) and differed significantly by group (P=0.01; P<0.001, respectively). Extracellular volume had an inverse correlation with O2max (r=−0.53, P=0.003 and left ventricular mass index (r=-0.44, P=0.02).Conclusions—Increasing left ventricular mass in athlete’s heart occurs because of an expansion of the cellular compartment while the extracellular volume becomes relatively smaller: a difference which becomes more marked as left ventricular mass increases. Athletic remodeling, both on a macroscopic and cellular level, is associated with the degree of an individual’s fitness. Cardiovascular magnetic resonance ECV quantification may have a future role in differentiating athlete’s heart from change secondary to cardiomyopathy.
Patients with MI have reduced global LV flow KE. Additionally, MI patients with LVT have significantly reduced and delayed wash-in of the LV. The relative drop of distal intra-ventricular A-wave KE, which represents the distal late-diastolic wash-in of the LV, is most strongly associated with the presence of LVT.
BackgroundPatients with type 2 diabetes mellitus and elevated urinary albumin:creatinine ratio (ACR) have increased risk of heart failure. We hypothesized this was because of cardiac tissue changes rather than silent coronary artery disease.Methods and ResultsIn a case‐controlled observational study 130 subjects including 50 ACR+ve diabetes mellitus patients with persistent microalbuminuria (ACR >2.5 mg/mol in males and >3.5 mg/mol in females, ≥2 measurements, no previous renin–angiotensin–aldosterone therapy, 50 ACR−ve diabetes mellitus patients and 30 controls underwent cardiovascular magnetic resonance for investigation of myocardial fibrosis, ischemia and infarction, and echocardiography. Thirty ACR+ve patients underwent further testing after 1‐year treatment with renin–angiotensin–aldosterone blockade. Cardiac extracellular volume fraction, a measure of diffuse fibrosis, was higher in diabetes mellitus patients than controls (26.1±3.4% and 23.3±3.0% P=0.0002) and in ACR+ve than ACR−ve diabetes mellitus patients (27.2±4.1% versus 25.1±2.9%, P=0.004). ACR+ve patients also had lower E′ measured by echocardiography (8.2±1.9 cm/s versus 8.9±1.9 cm/s, P=0.04) and elevated high‐sensitivity cardiac troponin T 18% versus 4% ≥14 ng/L (P=0.05). Rate of silent myocardial ischemia or infarction were not influenced by ACR status. Renin–angiotensin–aldosterone blockade was associated with increased left ventricular ejection fraction (59.3±7.8 to 61.5±8.7%, P=0.03) and decreased extracellular volume fraction (26.5±3.6 to 25.2±3.1, P=0.01) but no changes in diastolic function or high‐sensitivity cardiac troponin T levels.ConclusionsAsymptomatic diabetes mellitus patients with persistent microalbuminuria have markers of diffuse cardiac fibrosis including elevated extracellular volume fraction, high‐sensitivity cardiac troponin T, and diastolic dysfunction, which may in part be reversible by renin–angiotensin–aldosterone blockade. Increased risk in these patients may be mediated by subclinical changes in tissue structure and function.Clinical Trial Registration
URL: http://www.clinicaltrials.gov. Unique identifier: NCT01970319.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.