a b s t r a c tAs we are continuously depending on information technology applications by adopting electronic channels and software applications for our business, online transaction and communication, software security is increasingly becoming a necessity and more advanced concern. Both the functional and non-functional requirements are important and provide the necessary needs at the early phases of the software development process, specifically in the requirement phase. The aim of this research is to identify security threats early in the software development process to help the requirement engineer elicit appropriate security requirements in a more systematic manner throughout the requirement engineering process to ensure a secure and quality software development. This article proposes the STORE methodology for security requirement elicitation based on security threats analysis, which includes the identification of four points: PoA, PoB, PoC and PoD for effective security attack analysis. Further, the proposed STORE methodology is also validated by a case study of an ERP System. We also compare our STORE methodology with two existing techniques, namely, SQUARE and MOSRE. We have shown that more effective and efficient security requirements can be elicited by the STORE methodology and that it helps the security requirement engineer to elicit security requirements in a more organized manner.
for providing the fund to carry out the work.
Background Today’s healthcare organizations want to implement secure and quality healthcare software as cyber-security is a significant risk factor for healthcare data. Considering security requirements during trustworthy healthcare software development process is an essential part of the quality software development. There are several Security Requirements Engineering (SRE) methodologies, framework, process, standards available today. Unfortunately, there is still a necessity to improve these security requirements engineering approaches. Determining the most suitable security requirements engineering method for trustworthy healthcare software development is a challenging process. This study is aimed to present security experts’ perspective on the relative importance of the criteria for selecting effective SRE method by utilizing the multi-criteria decision making methods. Methods The study was planned and conducted to identify the most appropriate SRE approach for quality and trustworthy software development based on the security expert’s knowledge and experience. The hierarchical model was evaluated by using fuzzy TOPSIS model. Effective SRE selection criteria were compared in pairs. 25 security experts were asked to response the pairwise criteria comparison form. Results The impact of the recognized selection criteria for effective security requirements engineering approaches has been evaluated quantitatively. For each of the 25 participants, comparison matrixes were formed based on the scores of their responses in the form. The consistency ratios (CR) were found to be smaller than 10% (CR = 9.1% < 10%). According to pairwise comparisons result; with a 0.842 closeness coefficient (Ci), STORE methodology is the most effective security requirements engineering approach for trustworthy healthcare software development. Conclusions The findings of this research study demonstrate various factors in the decision-making process for the selection of a reliable method for security requirements engineering. This is a significant study that uses multi-criteria decision-making tools, specifically fuzzy TOPSIS, which used to evaluate different SRE methods for secure and trustworthy healthcare application development.
Silks are naturally occurring polymers that have been used clinically as sutures for hundreds of years. It's so for obtained from insects or worms, silk consists of a filament core protein, termed fibroin, and a glue-like coating made up of sericin proteins. An important component of silk has an extended history of being discarded as a waste in the course of silk processing. The cost of sericin for tissue engineering is underestimated and its capability in using as regenerative remedy has simply began to be explored. Its variable amino acid composition and various functional groups confer upon it attractive bioactive proteins, which are particularly interesting for biomedical programs. Because of its antioxidant properties, moisturizing ability, and mitogenic effect on mammalian cells, sericin is beneficial in cell regeneration and tissue engineering. Research shows that keratinocytes and fibroblasts have brought about the improvement of sericin-primarily based biomaterials for skin tissue repair, in particular as wound dressings. Moreover, sericin may be used for bone tissue engineering due to its ability to set off nucleation of bone-like hydroxyapatite. Stable silk sericin biomaterials, as films, sponges, and hydrogels, are obtained by means of cross-linking, ethanol precipitation, or mixing with different polymers. Now a day, sericin may also be used for delivery of drugs due to its chemical reactivity and pH-responsiveness which facilitate the fabrication of nano and microparticles, hydrogels, and conjugated molecules, enhancing the bioactivity of drugs. In this review, we outlined the current headways from extraction of sericin till its physical properties and biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.