Data visualization is often used as the first step while performing a variety of analytical tasks. With the advent of large, high-dimensional datasets and strong interest in data science, there is a need for tools that can support rapid visual analysis. In this paper we describe our vision for a new class of visualization recommendation systems that can automatically identify and interactively recommend visualizations relevant to an analytical task.
Query processing over big data is ubiquitous in modern clouds, where the system takes care of picking both the physical query execution plans and the resources needed to run those plans, using a cost-based query optimizer. A good cost model, therefore, is akin to better resource efficiency and lower operational costs. Unfortunately, the production workloads at Microsoft show that costs are very complex to model for big data systems. In this work, we investigate two key questions: (i) can we learn accurate cost models for big data systems, and (ii) can we integrate the learned models within the query optimizer. To answer these, we make three core contributions. First, we exploit workload patterns to learn a large number of individual cost models and combine them to achieve high accuracy and coverage over a long period. Second, we propose extensions to Cascades framework to pick optimal resources, i.e, number of containers, during query planning. And third, we integrate the learned cost models within the Cascade-style query optimizer of SCOPE at Microsoft. We evaluate the resulting system, Cleo, in a production environment using both production and TPC-H workloads. Our results show that the learned cost models are 2 to 3 orders of magnitude more accurate, and 20× more correlated with the actual runtimes, with a large majority (70%) of the plan changes leading to substantial improvements in latency as well as resource usage.
Identifying trendline visualizations with desired patterns is a common task during data exploration. Existing visual analytics tools offer limited flexibility, expressiveness, and scalability for such tasks, especially when the pattern of interest is under-specified and approximate. We propose ShapeSearch, an efficient and flexible pattern-searching tool, that enables the search for desired patterns via multiple mechanisms: sketch, natural-language, and visual regular expressions. We develop a novel shape querying algebra, with a minimal set of primitives and operators that can express a wide variety of ShapeSearch queries, and design a naturallanguage and regex-based parser to translate user queries to the algebraic representation. To execute these queries within interactive response times, ShapeSearch uses a fast shape algebra execution engine with query-aware optimizations, and perceptually-aware scoring methodologies. We present a thorough evaluation of the system, including a user study, a case study involving genomics data analysis, as well as performance experiments, comparing against state-of-the-art trendline shape matching approaches-that together demonstrate the usability and scalability of ShapeSearch.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.