Fatty acid composition, oil content, free fatty acid content, and peroxide value of Baltic herring (Clupea harengus membras) and two processed products (fried fillets and fish burgers) were investigated. The highest oil content of the fillets was found in autumn (10%), at the time when the free fatty acids had their minimum (1.4%). The main fatty acids were oleic (18-23%), palmitic (17%), palmitoleic (8-12%), and docosahexaeneoic (8-10%) acids. The proportion of saturated fatty acids was a constant 23% all year around, whereas mono- and polyunsaturated acids varied from 34 to 39% and 33 to 37%, respectively. During processing the oil content doubled and the fatty acid composition changed to the pattern of the rapeseed oil used for frying. Oleic acid was a major fatty acid in the products comprising over 40% of the total fatty acids. The proportion of n-3 acids decreased during processing but the total amount of polyunsaturated acids remained fairly constant.
The fatty acid composition and contents of fat and fat-soluble vitamins of three salted products prepared from Icelandic herring were analyzed. The effects of storage on the products over their shelf life, 6 or 12 months, were investigated. The average oil content of salted, gutted herring and salted fillets in vacuum remained constant, 17 and 12% of wet weight, respectively. In the pickled product the oil content decreased during the 12 months of storage from 13 to 12%. The composition of the products was typical for herring, the most abundant fatty acids being oleic (18:1n-9), palmitic (16:0), cetoleic (22:1n-11), and gadoleic (20:1n-9) acids. Monounsaturated acids constituted clearly the main group with a proportion of >50% of all fatty acids. Eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) comprised together >12% of all fatty acids. During storage, some hydrolysis of triacylglycerol (TAG) occurred, causing a slight reduction in practically all esterified fatty acids. In none of the three products was the loss of polyunsaturated fatty acids from TAG greater than the loss of saturated ones, indicating that the loss of EPA and DHA was not due to oxidation. After packing, the average content of vitamins A, D, and E in the products varied between 27 and 87 microg/100 g (wet weight), between 17-28 microg/100 g (wet weight), and between 77-120 microg/100 g (wet weight), respectively. During storage, the level of vitamin A decreased significantly, whereas no loss of vitamin D was observed. The content of vitamin E was low in all products and showed wide variation. When compared to the recommended daily intake, it could be concluded that the products investigated were good and stable sources of long-chain n-3 fatty acids (EPA, DHA) and vitamin D.
The on-line supercritical fluid extraction-supercritical fluid chromatography-gas chromatography method was applied to the determination of volatile compounds of raw and baked Baltic herring (Clupea harengus membras). The analytes were extracted with supercritical carbon dioxide at 45 degrees C and 10 MPa pressure. After extraction, the volatiles and coeluted lipids were separated on-line using supercritical fluid chromatography and the volatile fraction was introduced directly into a gas chromatograph. In all, 30 compounds were identified from fish samples with mass spectrometry. The most abundant compounds in the fresh Baltic herrings were heptadecane and 1-heptadecene. When the fish were stored for 3-6 days at 6 degrees C, the total peak area of the volatiles began to increase and the proportions of short chain acids (acetic, propanoic, 2-methylpropanoic, and 3-methylbutanoic) also increased. After 8-9 days of storage, 3-methylbutanoic acid comprised about 36 and 40% of all volatiles in raw and baked herring, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.