The metabolism of the plant lignans matairesinol, secoisolariciresinol, pinoresinol, syringaresinol, arctigenin, 7-hydroxymatairesinol, isolariciresinol, and lariciresinol by human fecal microflora was investigated to study their properties as mammalian lignan precursors. The quantitative analyses of lignan precursors and the mammalian lignans enterolactone and enterodiol were performed by HPLC with coulometric electrode array detector. The metabolic products, including mammalian lignans, were characterized as trimethylsilyl derivatives by gas chromatography-mass spectrometry. Matairesinol, secoisolariciresinol, lariciresinol, and pinoresinol were converted to mammalian lignans only. Several metabolites were isolated and tentatively identified as for syringaresinol and arctigenin in addition to the mammalian lignans. Metabolites of 7-hydroxymatairesinol were characterized as enterolactone and 7-hydroxyenterolactone by comparison with authentic reference compounds. A metabolic scheme describing the conversion of the most abundant new mammalian lignan precursors, pinoresinol and lariciresinol, is presented.
Cardiovascular disease (CVD) is the main cause of death in Western countries. Nutrition has a significant role in the prevention of many chronic diseases such as CVD, cancers, and degenerative brain diseases. The major risk and protective factors in the diet are well recognized, but interesting new candidates continue to appear. It is well known that a greater intake of fruit and vegetables can help prevent heart diseases and mortality. Because fruit, berries, and vegetables are chemically complex foods, it is difficult to pinpoint any single nutrient that contributes the most to the cardioprotective effects. Several potential components that are found in fruit, berries, and vegetables are probably involved in the protective effects against CVD. Potential beneficial substances include antioxidant vitamins, folate, fiber, and potassium. Antioxidant compounds found in fruit and vegetables, such as vitamin C, carotenoids, and flavonoids, may influence the risk of CVD by preventing the oxidation of cholesterol in arteries. In this review, the role of main dietary carotenoids, ie, lycopene, beta-carotene, alpha-carotene, beta-cryptoxanthin, lutein, and zeaxanthin, in the prevention of heart diseases is discussed. Although it is clear that a higher intake of fruit and vegetables can help prevent the morbidity and mortality associated with heart diseases, more information is needed to ascertain the association between the intake of single nutrients, such as carotenoids, and the risk of CVD. Currently, the consumption of carotenoids in pharmaceutical forms for the treatment or prevention of heart diseases cannot be recommended.
Summary Background The metabolic effects of omega-6 polyunsaturated fatty acids (PUFAs) remain contentious, and little evidence is available regarding their potential role in primary prevention of type 2 diabetes. We aimed to assess the associations of linoleic acid and arachidonic acid biomarkers with incident type 2 diabetes. Methods We did a pooled analysis of new, harmonised, individual-level analyses for the biomarkers linoleic acid and its metabolite arachidonic acid and incident type 2 diabetes. We analysed data from 20 prospective cohort studies from ten countries (Iceland, the Netherlands, the USA, Taiwan, the UK, Germany, Finland, Australia, Sweden, and France), with biomarkers sampled between 1970 and 2010. Participants included in the analyses were aged 18 years or older and had data available for linoleic acid and arachidonic acid biomarkers at baseline. We excluded participants with type 2 diabetes at baseline. The main outcome was the association between omega-6 PUFA biomarkers and incident type 2 diabetes. We assessed the relative risk of type 2 diabetes prospectively for each cohort and lipid compartment separately using a prespecified analytic plan for exposures, covariates, effect modifiers, and analysis, and the findings were then pooled using inverse-variance weighted meta-analysis. Findings Participants were 39 740 adults, aged (range of cohort means) 49–76 years with a BMI (range of cohort means) of 23∙3–28∙4 kg/m2, who did not have type 2 diabetes at baseline. During a follow-up of 366 073 person-years, we identified 4347 cases of incident type 2 diabetes. In multivariable-adjusted pooled analyses, higher proportions of linoleic acid biomarkers as percentages of total fatty acid were associated with a lower risk of type 2 diabetes overall (risk ratio [RR] per interquintile range 0∙65, 95% CI 0∙60–0∙72, p<0·0001; I2=53·9%, pheterogeneity=0·002). The associations between linoleic acid biomarkers and type 2 diabetes were generally similar in different lipid compartments, including phospholipids, plasma, cholesterol esters, and adipose tissue. Levels of arachidonic acid biomarker were not significantly associated with type 2 diabetes risk overall (RR per interquintile range 0∙96, 95% CI 0∙88–1∙05; p=0∙38; I2=63·0%, pheterogeneity<0·0001). The associations between linoleic acid and arachidonic acid biomarkers and the risk of type 2 diabetes were not significantly modified by any prespecified potential sources of heterogeneity (ie, age, BMI, sex, race, aspirin use, omega-3 PUFA levels, or variants of the FADS gene; all pheterogeneity≥0∙13). Interpretation Findings suggest that linoleic acid has long-term benefits for the prevention of type 2 diabetes and that arachidonic acid is not harmful. Funding Funders are shown in the appendix.
The role of flavonoids in CVD, especially in strokes, is unclear. Our aim was to study the role of flavonoids in CVD. We studied the association between the intakes of five subclasses (flavonols, flavones, flavanones, flavan-3-ols and anthocyanidins), a total of twenty-six flavonoids, on the risk of ischaemic stroke and CVD mortality. The study population consisted of 1950 eastern Finnish men aged 42-60 years free of prior CHD or stroke as part of the prospective population-based Kuopio Ischaemic Heart Disease Risk Factor Study. During an average follow-up time of 15·2 years, 102 ischaemic strokes and 153 CVD deaths occurred. In the Cox proportional hazards model adjusted for age and examination years, BMI, systolic blood pressure, hypertension medication, serum HDL-and LDL-cholesterol, serum TAG, maximal oxygen uptake, smoking, family history of CVD, diabetes, alcohol intake, energy-adjusted intake of folate, vitamin E, total fat and saturated fat intake (percentage of energy), men in the highest quartile of flavonol and flavan-3-ol intakes had a relative risk of 0·55 (95 % CI 0·31, 0·99) and 0·59 (95 % CI 0·30, 1·14) for ischaemic stroke, respectively, as compared with the lowest quartile. After multivariate adjustment, the relative risk for CVD death in the highest quartile of flavanone and flavone intakes were 0·54 (95 % CI 0·32, 0·92) and 0·65 (95 % CI 0·40, 1·05), respectively. The present results suggest that high intakes of flavonoids may be associated with decreased risk of ischaemic stroke and possibly with reduced CVD mortality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.