Land Use Regression (LUR) models have been used increasingly for modeling small-scale spatial variation in air pollution concentrations and estimating individual exposure for participants of cohort studies. Within the ESCAPE project, concentrations of PM(2.5), PM(2.5) absorbance, PM(10), and PM(coarse) were measured in 20 European study areas at 20 sites per area. GIS-derived predictor variables (e.g., traffic intensity, population, and land-use) were evaluated to model spatial variation of annual average concentrations for each study area. The median model explained variance (R(2)) was 71% for PM(2.5) (range across study areas 35-94%). Model R(2) was higher for PM(2.5) absorbance (median 89%, range 56-97%) and lower for PM(coarse) (median 68%, range 32- 81%). Models included between two and five predictor variables, with various traffic indicators as the most common predictors. Lower R(2) was related to small concentration variability or limited availability of predictor variables, especially traffic intensity. Cross validation R(2) results were on average 8-11% lower than model R(2). Careful selection of monitoring sites, examination of influential observations and skewed variable distributions were essential for developing stable LUR models. The final LUR models are used to estimate air pollution concentrations at the home addresses of participants in the health studies involved in ESCAPE.
h i g h l i g h t s < LUR models were developed in 36 study areas in Europe using a standardized approach. < NO 2 models explained a large fraction of concentration variability (median R 2 82%). < Local traffic intensity data were important predictors for LUR model development.
A simple method for correcting for the loading effects of aethalometer data is presented. The formula BC CORRECTED ϭ (1 ϩ k ⅐ ATN) ⅐ BC NONCORRECTED , where ATN is the attenuation and BC is black carbon, was used for correcting aethalometer data obtained from measurements at three different sites: a subway station in Helsinki, an urban background measurement station in Helsinki, and a rural station in Hyytiälä in central Finland. The BC data were compared with simultaneously measured aerosol volume concentrations (V). After the correction algorithm, the BC-to-V ratio remained relatively stable between consequent filter spots, which can be regarded as indirect evidence that the correction algorithm works. The k value calculated from the outdoor sites had a clear seasonal cycle that could be explained by darker aerosol in winter than in summer. When the contribution of BC to the total aerosol volume was high, the k factor was high and vice versa. In winter, the k values at all wavelengths were very close to that obtained from the subway station data. In summer, the k value was wavelength dependent and often negative. When the k value is negative, the noncorrected BC concentrations overestimated the true concentrations.
Land Use Regression (LUR) models have been used to describe and model spatial variability of annual mean concentrations of traffic related pollutants such as nitrogen dioxide (NO2), nitrogen oxides (NOx) and particulate matter (PM). No models have yet been published of elemental composition. As part of the ESCAPE project, we measured the elemental composition in both the PM10 and PM2.5 fraction sizes at 20 sites in each of 20 study areas across Europe. LUR models for eight a priori selected elements (copper (Cu), iron (Fe), potassium (K), nickel (Ni), sulfur (S), silicon (Si), vanadium (V), and zinc (Zn)) were developed. Good models were developed for Cu, Fe, and Zn in both fractions (PM10 and PM2.5) explaining on average between 67 and 79% of the concentration variance (R(2)) with a large variability between areas. Traffic variables were the dominant predictors, reflecting nontailpipe emissions. Models for V and S in the PM10 and PM2.5 fractions and Si, Ni, and K in the PM10 fraction performed moderately with R(2) ranging from 50 to 61%. Si, NI, and K models for PM2.5 performed poorest with R(2) under 50%. The LUR models are used to estimate exposures to elemental composition in the health studies involved in ESCAPE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.