Coacervates, which are formed by liquid−liquid phase separation, have been extensively explored as models for synthetic cells and membraneless organelles, so their in-depth structural analysis is crucial. However, both the inner structure dynamics and formation mechanism of coacervates remain elusive. Herein, we demonstrate real-time confocal observation of a threedimensional sponge-like network in a dipeptide-based coacervate. In situ generation of the dipeptide allowed us to capture the emergence of the sponge-like network via unprecedented membrane folding of vesicle-shaped intermediates. We also visualized dynamic fluctuation of the network, including reversible engagement/disengagement of cross-links and a stochastic network kissing event. Photoinduced transient formation of a multiphase coacervate was achieved with a thermally responsive phase transition. Our findings expand the fundamental understanding of synthetic coacervates and provide opportunities to manipulate their physicochemical properties by engineering the inner network for potential applications in development of artificial cells and life-like material fabrication.
Coacervates, which are formed by liquid–liquid phase separation, have been extensively explored as models for synthetic cells and membraneless organelles, so their in-depth structural analysis is crucial. However, both the inner structure dynamics and formation mechanism of coacervates remain elusive. Herein, we demonstrate real-time confocal observation of a three-dimensional sponge-like network in a dipeptide-based coacervate. In situ generation of the dipeptide allowed us to capture the emergence of the sponge-like network via unprecedented membrane folding of vesicle-shaped intermediates. We also visualized dynamic fluctuation of the network, including reversible engagement/disengagement of crosslinks and a stochastic network kissing event. Photo-induced transient formation of a multiphase coacervate was achieved with a thermally responsive phase transition. Our findings expand the fundamental understanding of synthetic and biological coacervates, and provide opportunities to manipulate their physicochemical properties by engineering the inner network for potential applications in life-like material fabrication and biomedical research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.