The pathophysiological effects of the activation or inhibition of the nitric oxide (NO)-mediated pathway on the deformability of red blood cells (RBC) were evaluated in the presence of hypercholesterolemia induced in rabbits fed a cholesterol-rich diet. RBC deformability was assessed using a microchannel array flow analyzer system. The maximum passage time (MPT) by flowing a suspension of RBC through the microchannels was used as an index of RBC deformability. During cholesterol feeding for 12 weeks, MPT gradually increased with no significant elevation in the serum asymmetric dimethylarginine (ADMA) and arginine/ADMA ratio. The reduction in RBC deformability associated with hypercholesterolemia was significantly improved during incubation with each of three different NO pathway activators: a NO donor, 8-bromo-cyclic GMP, and arginine; however, no additional reduction was observed with ADMA administration. The inhibition of NO synthase due to ADMA caused a significant reduction in the deformability of normal RBC, which was reversed with NO pathway activation. These results suggest that impaired RBC deformability may be associated with a dysfunction in the NO pathway that is partially dependent upon the accumulation of ADMA in RBC, and exogenous NO pathway activators may improve the microcirculation by restoring RBC deformability in the presence of hypercholesterolemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.