To assess the physiological function of Ca(2+)‐dependent protein phosphatase (PP2B) in the yeast Saccharomyces cerevisiae, the phenotypes of PP2B‐deficient mutants were investigated. Although PP2B was dispensable for growth under normal conditions, the mutations did, however, cause growth inhibition under certain stress circumstances. The growth of the mutants was inhibited by NaCl and LiCl, but not by KCl, CaCl2, MgCl2 or nonspecific osmotic stresses. Upon shift to high NaCl medium, intracellular Na+ levels of both wild type yeast and the mutants initially increased at a comparable rate. However, internal Na+ in wild type cells started to decline more rapidly than the mutant cells during cultivation in high NaCl medium, indicating that PP2B is important in maintaining a gradient across the membrane. The protection against salt stress was achieved, at least in part, by the stimulation of Na+ export. The maintenance of a high level of internal K+ in high NaCl medium was also PP2B‐dependent. In the presence of the immunosuppressant FK506, the growth behaviour and intracellular Na+ and K+ of wild type cells in high NaCl medium became very similar to those of the PP2B‐deficient mutant in a manner dependent on the presence of the FK506 binding protein.
Formation of the forespore membrane, which becomes the plasma membrane of spores, is an intriguing step in the sporulation of the fission yeast Schizosaccharomyces pombe. Here we report two novel proteins that localize to the forespore membrane. spo3 ϩ encodes a potential membrane protein, which was expressed only during sporulation. Green fluorescent protein (GFP) fusion revealed that Spo3 localized to the forespore membrane. The spo3 disruptant was viable and executed meiotic nuclear divisions as efficiently as the wild type but did not form spores. One of the spo3 alleles, spo3-KC51, was dose-dependently suppressed by psy1 ϩ , which encodes a protein similar to mammalian syntaxin-1A, a component of the plasma membrane docking/fusion complex. psy1 ϩ was essential for vegetative growth, and its transcription was enhanced during sporulation. As expected, Psy1 localized to the plasma membrane during vegetative growth. Interestingly, Psy1 on the plasma membrane disappeared immediately after first meiotic division and relocalized to the forespore membrane as the second division initiated. In the spo3 null mutant, the forespore membrane was initiated but failed to develop a normal morphology. Electron microscopy revealed that membrane vesicles were accumulated in the cytoplasm of immature spo3⌬ asci. These results suggest that Spo3 is a key component of the forespore membrane and is essential for its assembly acting in collaboration with the syntaxin-like protein.
Autophagy is triggered when organisms sense radical environmental changes, including nutritional starvation. During autophagy, cytoplasmic components, including organelles, are enclosed within autophagosomes and are degraded upon lysosome-vacuole fusion. In this study, we show that processing of GFP-tagged Atg8 can serve as a marker for autophagy in the fission yeast Schizosaccharomyces pombe. Using this marker, 13 Atg homologues were also found to be required for autophagy in fission yeast. In budding yeast, autophagy-deficient mutants are known to be sterile, whereas in fission yeast we found that up to 30 % of autophagy-defective cells with amino acid auxotrophy were able to recover sporulation when an excess of required amino acids was supplied. Furthermore, we found that approximately 15 % of the autophagydefective cells were also able to sporulate when a prototrophic strain was subjected to nitrogen starvation, which suggested that fission yeast may store sufficient intracellular nitrogen to allow partial sporulation under nitrogen-limiting conditions, although the majority of the nitrogen source is supplied by autophagy. Monitoring of the sporulation process revealed that the process was blocked non-specifically at various stages in the atg1D and atg12D mutants, possibly due to a shortage of amino acids. Taking advantage of this partial sporulation ability of fission yeast, we sought evidence for the existence of a recycling system for nitrogen sources during starvation. INTRODUCTIONAutophagy is a degradative pathway conserved among eukaryotic cells, and is responsible for turnover of damaged organelles and long-lived proteins. When living organisms are exposed to radical environmental changes such as nutrient starvation, differentiation or development, autophagy is rapidly induced and inner cell components are reorganized. In the budding yeast Saccharomyces cerevisiae, autophagy is triggered by starvation for nitrogen or carbon, after which endogenous proteins and organelles are enclosed within isolated membranes called autophagosomes. The outer membrane of the autophagosome then fuses with the vacuole, allowing the contents of the autophagosome, designated autophagic bodies, to be released and degraded in the vacuole. The molecular mechanisms involved in the process of autophagy have been subjected to detailed genetic analysis and more than 20 AuTophaGy-related (ATG) genes essential for autophagy have been identified in Sac. cerevisiae Kamada et al., 2000;Mizushima et al., 1998).One of the most striking findings with respect to function of the Atg proteins was the discovery of two ubiquitin-like conjugation systems involving Atg12p and Atg8p (Ohsumi, 2001). Atg12p, which has no apparent homology to ubiquitin, covalently attaches to Atg5p in a manner analogous to ubiquitination, and then forms a complex with Atg16p. Atg8p also lacks similarity to ubiquitin, but Abbreviations: DAPI, 49,6-diamidino-2-phenylindole; DIC, differential interference contrast; FSM, forespore membrane.Two supplementary tables a...
The Schizosaccharomyces pombe spo20-KC104 mutation was originally isolated in a screen for sporulation-deficient mutants, and the spo20-KC104 mutant exhibits temperature-sensitive growth. Herein, we report that S. pombe, spo20(+) is essential for fission yeast cell viability and is constitutively expressed throughout the life cycle. We also demonstrate that the spo20(+) gene product is structurally homologous to Saccharomyces cerevisiae Sec14, the major phosphatidylinositol transfer protein of budding yeast. This structural homology translates to a significant degree of functional relatedness because reciprocal complementation experiments demonstrate that each protein is able to fulfill the essential function of the other. Moreover, biochemical experiments show that, like Sec14, Spo20 is a phosphatidylinositol/phosphatidylcholine-transfer protein. That Spo20 is required for Golgi secretory function in vegetative cells is indicated by our demonstration that the spo20-KC104 mutant accumulates aberrant Golgi cisternae at restrictive temperatures. However, a second phenotype observed in Spo20-deficient fission yeast is arrest of cell division before completion of cell separation. Consistent with a direct role for Spo20 in controlling cell septation in vegetatively growing cells, localization experiments reveal that Spo20 preferentially localizes to the cell poles and to sites of septation of fission yeast cells. We also report that, when fission yeasts are challenged with nitrogen starvation, Spo20 translocates to the nucleus. This nuclear localization persists during conjugation and meiosis. On completion of meiosis, Spo20 translocates to forespore membranes, and it is the assembly of forespore membranes that is abnormal in spo20-KC104 cells. In such mutants, a considerable fraction of forming prespores fail to encapsulate the haploid nucleus. Our results indicate that Spo20 regulates the formation of specialized membrane structures in addition to its recognized role in regulating Golgi secretory function.
During yeast sporulation, a forespore membrane (FSM) initiates at each spindle-pole body and extends to form the spore envelope. We used Schizosaccharomyces pombe to investigate the role of septins during this process. During the prior conjugation of haploid cells, the four vegetatively expressed septins (Spn1, Spn2, Spn3, and Spn4) coassemble at the fusion site and are necessary for its normal morphogenesis. Sporulation involves a different set of four septins (Spn2, Spn5, Spn6, and the atypical Spn7) that does not include the core subunits of the vegetative septin complex. The four sporulation septins form a complex in vitro and colocalize interdependently to a ring-shaped structure along each FSM, and septin mutations result in disoriented FSM extension. The septins and the leading-edge proteins appear to function in parallel to orient FSM extension. Spn2 and Spn7 bind to phosphatidylinositol 4-phosphate [PtdIns(4)P] in vitro, and PtdIns(4)P is enriched in the FSMs, suggesting that septins bind to the FSMs via this lipid. Cells expressing a mutant Spn2 protein unable to bind PtdIns(4)P still form extended septin structures, but these structures fail to associate with the FSMs, which are frequently disoriented. Thus, septins appear to form a scaffold that helps to guide the oriented extension of the FSM.Yeast sporulation is a developmental process that involves multiple, sequential events that need to be tightly coordinated (59, 68). In the fission yeast Schizosaccharomyces pombe, when cells of opposite mating type (h ϩ and h Ϫ ) are mixed and shifted to conditions of nitrogen starvation, cell fusion and karyogamy occur to form a diploid zygote, which then undergoes premeiotic DNA replication, the two meiotic divisions, formation of the spore envelopes (comprising the plasma membrane and a specialized cell wall), and maturation of the spores (74, 81). At the onset of meiosis II, precursors of the spore envelopes, the forespore membranes (FSMs), are formed by the fusion of vesicles at the cytoplasmic surface of each spindle-pole body (SPB) and then extend to engulf the four nuclear lobes (the nuclear envelope does not break down during meiosis), thus capturing the haploid nuclei, along with associated cytoplasm and organelles, to form the nascent spores (55,68,81). How the FSMs recognize and interact with the nuclear envelope, extend in a properly oriented manner, and close to form uniformly sized spherical spores is not understood, and study of this model system should also help to elucidate the more general question of how membranes obtain their shapes in vivo.It has been shown that both the SPB and the vesicle trafficking system play important roles in the formation and development of the FSM and of its counterpart in the budding yeast Saccharomyces cerevisiae, the prospore membrane (PSM). In S. pombe, the SPB changes its shape from a compact dot to a crescent at metaphase of meiosis II (26,29), and its outer plaque acquires meiosis-specific components such as Spo2, Spo13, and Spo15 (30,57,68). This modified...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.