The exogenous addition of the catalytic subunit of cAMP-dependent protein kinase (PKA), cGMP-dependent protein kinase (PKG), or calmodulin (CaM) induced rapid phosphorylation of the ryanodine receptor (Ca2+ release channel) in canine cardiac microsomes treated with 1 mM [gamma-32P]ATP. Added protein kinase C (PKC) also phosphorylated the cardiac ryanodine receptor but at a relatively slow rate. The observed level of PKA-, PKG-, or PKC-dependent phosphorylation of the ryanodine receptor was comparable to the maximum level of [3H]ryanodine binding in cardiac microsomes, whereas the level of CaM-dependent phosphorylation was about 4 times greater. Phosphorylation by PKA, PKG, and PKC increased [3H]ryanodine binding in cardiac microsomes by 22 +/- 5, 17 +/- 4, and 15 +/- 9% (average +/- SD, n = 4-5), respectively. In contrast, incubation of microsomes with 5 microM CaM alone and 5 microM CaM plus 1 mM ATP decreased [3H]ryanodine binding by 38 +/- 14 and 53 +/- 15% (average +/- SD, n = 6), respectively. Phosphopeptide mapping and phosphoamino acid analysis provided evidence suggesting that PKA, PKG, and PKC predominantly phosphorylate serine residue(s) in the same phosphopeptide (peptide 1), whereas the endogenous CaM-kinase phosphorylates serine residue(s) in a different phosphopeptide (peptide 4). Photoaffinity labeling of microsomes with photoreactive 125I-labeled CaM revealed that CaM bound to a high molecular weight protein, which was immunoprecipitated by a monoclonal antibody against the cardiac ryanodine receptor. These results suggest that protein kinase-dependent phosphorylation and CaM play important regulatory roles in the function of the cardiac sarcoplasmic reticulum Ca2+ release channel.
The resonance Raman spectrum of halorhodopsin, a retinoid protein with light-dependent chloride pumping activity, was observed in the presence and absence of chloride in H20 and D20. The frequency of the in-phase C=C stretching mode was shifted from 1528 to 1530 cm-' upon removal of chloride, in accordance with what was expected from the shift of the wavelength for the absorption maximum from 576 to 567 nm. The chloride effect was also found with the C=NH stretching modes of the protonated Schiff base, which were located at 1635 and 1642 cm-' in the presence and absence of chloride, respectively. However, the corresponding frequencies of the deuterated Schiff base linkage exhibited little dependence on chloride. The N-H bending mode of the protonated Schiff base was assigned to the Raman line at 1352 cm-' since it was apparently replaced by the Raman line at 977 cm-' upon deuteration. This line did not undergo any chloride effect. The Raman spectrum in the 1150-1250-cm-' region was unaffected by chloride and was similar to that of all-trans-bacteriorhodopsin. These observations and simple vibrational calculations suggest that chloride is not hydrogen bonded to the Schiff base proton in a trivial manner but that binding of chloride changes a limited number of force constants of the C=NH moiety, presumably through a direct interaction with the ?r orbital of the Schiff base or indirectly through a local structural change of the protein.
The binding of Ca2+ to 4-nitro-2,1,3-benzoxadiazole (NBD)-labeled sarcoplasmic reticulum Ca2(+)-ATPase was accelerated markedly when the pH was changed at 11 degrees C from 6.5 to 8.0 at the time of Ca2+ addition. We examined the effect of pH on the enzyme conformational transition by measuring the kinetics of NBD fluorescence rises induced by a pH jump under various ligand conditions. The fast fluorescence rise following a pH jump from 6.0 or 6.5 to various test pHs in the presence and absence of Ca2+ proceeded monoexponentially. The amplitude of this fluorescence rise in the presence of Ca2+ was independent of the test pH, whereas the observed rate constant (kobs) increased markedly as the test pH increased. In contrast, the amplitude of the fast fluorescence rise in the absence of Ca2+ increased with increasing test pH, whereas kobs decreased. MgATP or Mg2+ influenced the pH dependences of these parameters in a complex way except for the amplitudes measured in the presence of Ca2+. These data could be simulated by using a reaction model in which Ca2+ binding is preceded by a rate-limiting enzyme conformational transition from a low to a high NBD fluorescence state and 1 mol each of H+ is liberated before and after this conformational transition. MgATP or Mg2+ appeared to promote this conformational transition by enhancing deprotonation of the enzyme. These results suggest that deprotonation may be the primary event in the activation of the unphosphorylated enzyme by Ca2+.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.