Early passage human diploid fibroblasts develop senescent morphology prematurely within a week after a 2-hour pulse treatment with low or mild dose H(2)O(2). We test here the role of cell cycle checkpoints, cytoskeletal proteins and de novo protein synthesis in senescent morphogenesis following H(2)O(2) treatment. H(2)O(2) treatment causes transient elevation of p53 protein and prolonged inhibition of Rb hyperphosphorylation. Expression of human papillomaviral E6 gene prevented elevation of p53 but did not affect senescent morphogenesis. Expression of human papillomaviral E7 gene reduced the level of Rb protein and prevented induction of senescent morphology by H(2)O(2). The mutants of the E7 gene, in which the Rb family protein binding site was destroyed, could not reduce Rb protein or prevent H(2)O(2) from inducing senescent morphology. Senescent-like cells showed enhanced actin stress fibers. In untreated cells, vinculin and paxillin preferentially distributed along the edge of the cells. In contrast, vinculin and paxillin distributed randomly and sporadically throughout senescent-like cells. E7 expression prevented enhancement of actin filament formation and redistribution of vinculin or paxillin. Neither wild-type nor E7 cells showed changes in the protein level of actin, vinculin or paxillin measured by western blot after H(2)O(2) treatment. Finally, depletion of methionine in the culture medium after H(2)O(2) treatment prevented senescent morphogenesis without affecting dephosphorylation of Rb protein. Our results suggest that senescent morphology likely develops by a program involving activated Rb family proteins, enhancement of actin stress fibers, redistribution of focal adhesion proteins and de novo protein synthesis.
Cardiac hypertrophy is an end point of chronic cardiac toxicity from a number of toxicants. Doxorubicin, cocaine, acetaldehyde, monocrotaline, and azide are examples of these toxicants, which may induce hypertrophy by increasing oxidants, circulating levels of catecholamines, and hemodynamic load or by inducing hypoxia. We summarize here the major signal transduction pathways and common changes in gene expression found with the classical hypertrophy inducers angiotensin II, endothelin 1, and catecholamines. Activation of G-proteins, calcium signaling, phosphoinositide 3-kinase (PI3K), certain family members of protein kinase Cs (PKCs), and three branches of mitogenactivated protein kinases (MAPKs), i.e. extracellular signal-regulated kinases (ERKs), p38, and c-Jun N-terminal kinases (JNKs), are important for developing a hypertrophic phenotype in cardiomyocytes. Characteristic changes of gene expression in hypertrophy include the elevated transcription of atrial natriuretic factor (ANF), beta-myosin heavy chain (beta MHC), skeletal alpha-actin (SkA), certain variants of integrins and perhaps tubulin genes, and reduced expression of the sarcoplasmic reticulum proteins phospholamban and sarco(endo)plasmic reticulum Ca2+-ATPase 2 alpha (SERCA2 alpha), and of the ryanodine receptors. Although which toxicants induce these molecular changes remains to be tested, increasing lines of evidence support that oxidants play a central role in cardiac hypertrophy. Oxidants activate small G-proteins, calcium signaling, PI3K, PKCs, and MAPKs. Oxidants cause cardiomyocytes to enlarge in vitro. Recent developments in transgenic, genomic, and proteomic technologies will provide needed tools to reveal the mechanism of chronic cardiac toxicity at the cellular and molecular levels.
The tumor suppressor p53 protein is known to play a critical role in apoptosis. In normal human diploid fibroblasts (HDFs), expression of the human papillomaviral (HPV) E6 gene results in a reduction of p53 protein and an inhibition of oxidant induced apoptosis within 24 h. In comparison, expression of the HPV E7 gene causes down-regulation of Rb protein without inhibiting apoptosis. Here we determine whether HDFs expressing E6 undergo cell death with a delayed time course following H 2 O 2 exposure. Appearances of caspase-3 activity, cell detachment, trypan blue uptake and aberrant nuclei were all delayed in E6 cells compared to wild type (wt) or E7 cells. A mutant E6 gene that failed to reduce p53 could not delay cell death. Morphological examination revealed nuclear condensation in dying wt or E7 cells but nuclear fragmentation in E6 cells. Flow cytometry analysis indicated an S phase distribution of dying wt or E7 cells but a G2/M phase distribution of dying E6 cells. An elevation of cyclin B was observed in dying E6 cells but not in apoptotic E7 cells. Dying E6 cells also had elevated levels of cdc-2 protein and histone kinase activity, suggesting that the cells died at mitosis. Electron microscopy studies showed that E6 cells may die at prophase or prometaphase. Overexpression of bcl-2 resulted in an inhibition of both caspase-3 and death of E7 or E6 cells. Inactivating caspases with zVAD-fmk also reduced the death rate of E7 and E6 cells. Our data indicate that expression of HPV E6 causes a delay and morphological modification of cell death induced by oxidants. E6 cells die at mitosis, which can be inhibited by bcl-2 overexpression or caspase inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.