Background: Although acute kidney injury (AKI) is a frequent complication in patients receiving extracorporeal membrane oxygenation (ECMO), the incidence and impact of AKI on mortality among patients on ECMO remain unclear. We conducted this systematic review to summarize the incidence and impact of AKI on mortality risk among adult patients on ECMO. Methods: A literature search was performed using EMBASE, Ovid MEDLINE, and Cochrane Databases from inception until March 2019 to identify studies assessing the incidence of AKI (using a standard AKI definition), severe AKI requiring renal replacement therapy (RRT), and the impact of AKI among adult patients on ECMO. Effect estimates from the individual studies were obtained and combined utilizing random-effects, generic inverse variance method of DerSimonian-Laird. The protocol for this systematic review is registered with PROSPERO (no. CRD42018103527). Results: 41 cohort studies with a total of 10,282 adult patients receiving ECMO were enrolled. Overall, the pooled estimated incidence of AKI and severe AKI requiring RRT were 62.8% (95%CI: 52.1%–72.4%) and 44.9% (95%CI: 40.8%–49.0%), respectively. Meta-regression showed that the year of study did not significantly affect the incidence of AKI (p = 0.67) or AKI requiring RRT (p = 0.83). The pooled odds ratio (OR) of hospital mortality among patients receiving ECMO with AKI on RRT was 3.73 (95% CI, 2.87–4.85). When the analysis was limited to studies with confounder-adjusted analysis, increased hospital mortality remained significant among patients receiving ECMO with AKI requiring RRT with pooled OR of 3.32 (95% CI, 2.21–4.99). There was no publication bias as evaluated by the funnel plot and Egger’s regression asymmetry test with p = 0.62 and p = 0.17 for the incidence of AKI and severe AKI requiring RRT, respectively. Conclusion: Among patients receiving ECMO, the incidence rates of AKI and severe AKI requiring RRT are high, which has not changed over time. Patients who develop AKI requiring RRT while on ECMO carry 3.7-fold higher hospital mortality.
Background: The study’s aim was to summarize the incidence and impacts of post-liver transplant (LTx) acute kidney injury (AKI) on outcomes after LTx. Methods: A literature search was performed using the MEDLINE, EMBASE and Cochrane Databases from inception until December 2018 to identify studies assessing the incidence of AKI (using a standard AKI definition) in adult patients undergoing LTx. Effect estimates from the individual studies were derived and consolidated utilizing random-effect, the generic inverse variance approach of DerSimonian and Laird. The protocol for this systematic review is registered with PROSPERO (no. CRD42018100664). Results: Thirty-eight cohort studies, with a total of 13,422 LTx patients, were enrolled. Overall, the pooled estimated incidence rates of post-LTx AKI and severe AKI requiring renal replacement therapy (RRT) were 40.7% (95% CI: 35.4%–46.2%) and 7.7% (95% CI: 5.1%–11.4%), respectively. Meta-regression showed that the year of study did not significantly affect the incidence of post-LTx AKI (p = 0.81). The pooled estimated in-hospital or 30-day mortality, and 1-year mortality rates of patients with post-LTx AKI were 16.5% (95% CI: 10.8%–24.3%) and 31.1% (95% CI: 22.4%–41.5%), respectively. Post-LTx AKI and severe AKI requiring RRT were associated with significantly higher mortality with pooled ORs of 2.96 (95% CI: 2.32–3.77) and 8.15 (95%CI: 4.52–14.69), respectively. Compared to those without post-LTx AKI, recipients with post-LTx AKI had significantly increased risk of liver graft failure and chronic kidney disease with pooled ORs of 3.76 (95% CI: 1.56–9.03) and 2.35 (95% CI: 1.53–3.61), respectively. Conclusion: The overall estimated incidence rates of post-LTx AKI and severe AKI requiring RRT are 40.8% and 7.0%, respectively. There are significant associations of post-LTx AKI with increased mortality and graft failure after transplantation. Furthermore, the incidence of post-LTx AKI has remained stable over the ten years of the study.
Background: The objective of this systematic review was to evaluate the efficacy and safety profiles of sodium-glucose co-transporter 2 (SGLT-2) inhibitors for treatment of diabetes mellitus (DM) among kidney transplant patients. Methods: We conducted electronic searches in Medline, Embase, Scopus, and Cochrane databases from inception through April 2020 to identify studies that investigated the efficacy and safety of SGLT-2 inhibitors in kidney transplant patients with DM. Study results were pooled and analyzed utilizing random-effects model. Results: Eight studies with 132 patients (baseline estimated glomerular filtration rate (eGFR) of 64.5 ± 19.9 mL/min/1.73 m2) treated with SGLT-2 inhibitors were included in our meta-analysis. SGLT-2 inhibitors demonstrated significantly lower hemoglobin A1c (HbA1c) (WMD = −0.56% [95%CI: −0.97, −0.16]; p = 0.007) and body weight (WMD = −2.16 kg [95%CI: −3.08, −1.24]; p < 0.001) at end of study compared to baseline level. There were no significant changes in eGFR, serum creatinine, urine protein creatinine ratio, and blood pressure. By subgroup analysis, empagliflozin demonstrated a significant reduction in body mass index (BMI) and body weight. Canagliflozin revealed a significant decrease in HbA1C and systolic blood pressure. In terms of safety profiles, fourteen patients had urinary tract infection. Only one had genital mycosis, one had acute kidney injury, and one had cellulitis. There were no reported cases of euglycemic ketoacidosis or acute rejection during the treatment. Conclusion: Among kidney transplant patients with excellent kidney function, SGLT-2 inhibitors for treatment of DM are effective in lowering HbA1C, reducing body weight, and preserving kidney function without reporting of serious adverse events, including euglycemic ketoacidosis and acute rejection.
Kidney diseases form part of the major health burdens experienced all over the world. Kidney diseases are linked to high economic burden, deaths, and morbidity rates. The great importance of collecting a large quantity of health-related data among human cohorts, what scholars refer to as “big data”, has increasingly been identified, with the establishment of a large group of cohorts and the usage of electronic health records (EHRs) in nephrology and transplantation. These data are valuable, and can potentially be utilized by researchers to advance knowledge in the field. Furthermore, progress in big data is stimulating the flourishing of artificial intelligence (AI), which is an excellent tool for handling, and subsequently processing, a great amount of data and may be applied to highlight more information on the effectiveness of medicine in kidney-related complications for the purpose of more precise phenotype and outcome prediction. In this article, we discuss the advances and challenges in big data, the use of EHRs and AI, with great emphasis on the usage of nephrology and transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.