We settle a part of the conjecture by Bandini and Valentino [‘On the structure and slopes of Drinfeld cusp forms’, Exp. Math.31(2) (2022), 637–651] for
$S_{k,l}(\Gamma _0(T))$
when
$\mathrm {dim}\ S_{k,l}(\mathrm {GL}_2(A))\leq 2$
. We frame and check the conjecture for primes
$\mathfrak {p}$
and higher levels
$\mathfrak {p}\mathfrak {m}$
, and show that a part of the conjecture for level
$\mathfrak {p} \mathfrak {m}$
does not hold if
$\mathfrak {m}\ne A$
and
$(k,l)=(2,1)$
.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.